KOPS - The Institutional Repository of the University of Konstanz

A Trust Region Reduced Basis Pascoletti-Serafini Algorithm for Multi-Objective PDE-Constrained Parameter Optimization

A Trust Region Reduced Basis Pascoletti-Serafini Algorithm for Multi-Objective PDE-Constrained Parameter Optimization

Cite This

Files in this item

Checksum: MD5:75fde44b7205745dc2705125698c21ed

BANHOLZER, Stefan, Luca MECHELLI, Stefan VOLKWEIN, 2022. A Trust Region Reduced Basis Pascoletti-Serafini Algorithm for Multi-Objective PDE-Constrained Parameter Optimization. In: Mathematical and Computational Applications. MDPI AG. 27(3), 39. ISSN 1300-686X. eISSN 2297-8747. Available under: doi: 10.3390/mca27030039

@article{Banholzer2022-06Trust-57762, title={A Trust Region Reduced Basis Pascoletti-Serafini Algorithm for Multi-Objective PDE-Constrained Parameter Optimization}, year={2022}, doi={10.3390/mca27030039}, number={3}, volume={27}, issn={1300-686X}, journal={Mathematical and Computational Applications}, author={Banholzer, Stefan and Mechelli, Luca and Volkwein, Stefan}, note={Article Number: 39} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/57762"> <dc:contributor>Mechelli, Luca</dc:contributor> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">In the present paper non-convex multi-objective parameter optimization problems are considered which are governed by elliptic parametrized partial differential equations (PDEs). To solve these problems numerically the Pascoletti-Serafini scalarization is applied and the obtained scalar optimization problems are solved by an augmented Lagrangian method. However, due to the PDE constraints, the numerical solution is very expensive so that a model reduction is utilized by using the reduced basis (RB) method. The quality of the RB approximation is ensured by a trust-region strategy which does not require any offline procedure, in which the RB functions are computed in a greedy algorithm. Moreover, convergence of the proposed method is guaranteed and different techniques to prevent the excessive growth of the number of basis functions are explored. Numerical examples illustrate the efficiency of the proposed solution technique.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57762"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57762/1/Banholzer_2-1w3mmn3yksnmh0.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Banholzer, Stefan</dc:contributor> <dcterms:title>A Trust Region Reduced Basis Pascoletti-Serafini Algorithm for Multi-Objective PDE-Constrained Parameter Optimization</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57762/1/Banholzer_2-1w3mmn3yksnmh0.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-10T08:44:35Z</dc:date> <dc:creator>Volkwein, Stefan</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Mechelli, Luca</dc:creator> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Banholzer, Stefan</dc:creator> <dcterms:issued>2022-06</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-06-10T08:44:35Z</dcterms:available> </rdf:Description> </rdf:RDF>

Downloads since Jun 10, 2022 (Information about access statistics)

Banholzer_2-1w3mmn3yksnmh0.pdf 47

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


Browse

My Account