Large-scale crowdsourced subjective assessment of picturewise just noticeable difference

Lade...
Vorschaubild
Dateien
Lin_2-54g16qw29m6b7.pdf
Lin_2-54g16qw29m6b7.pdfGröße: 3.96 MBDownloads: 30
Datum
2022
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Green
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
IEEE Transactions on Circuits and Systems for Video Technology. IEEE. 2022, 32(9), pp. 5859-5873. ISSN 1051-8215. eISSN 1558-2205. Available under: doi: 10.1109/TCSVT.2022.3163860
Zusammenfassung

The picturewise just noticeable difference (PJND) for a given image, compression scheme, and subject is the smallest distortion level that the subject can perceive when the image is compressed with this compression scheme. The PJND can be used to determine the compression level at which a given proportion of the population does not notice any distortion in the compressed image. To obtain accurate and diverse results, the PJND must be determined for a large number of subjects and images. This is particularly important when experimental PJND data are used to train deep learning models that can predict a probability distribution model of the PJND for a new image. To date, such subjective studies have been carried out in laboratory environments. However, the number of participants and images in all existing PJND studies is very small because of the challenges involved in setting up laboratory experiments. To address this limitation, we develop a framework to conduct PJND assessments via crowdsourcing. We use a new technique based on slider adjustment and a flicker test to determine the PJND. A pilot study demonstrated that our technique could decrease the study duration by 50% and double the perceptual sensitivity compared to the standard binary search approach that successively compares a test image side by side with its reference image. Our framework includes a robust and systematic scheme to ensure the reliability of the crowdsourced results. Using 1,008 source images and distorted versions obtained with JPEG and BPG compression, we apply our crowdsourcing framework to build the largest PJND dataset, KonJND-1k (Konstanz just noticeable difference 1k dataset). A total of 503 workers participated in the study, yielding 61,030 PJND samples that resulted in an average of 42 samples per source image. The KonJND-1k dataset is available at http://database.mmsp-kn.de/konjnd-1k-database.html.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690LIN, Hanhe, Guangan CHEN, Mohsen JENADELEH, Vlad HOSU, Ulf-Dietrich REIPS, Raouf HAMZAOUI, Dietmar SAUPE, 2022. Large-scale crowdsourced subjective assessment of picturewise just noticeable difference. In: IEEE Transactions on Circuits and Systems for Video Technology. IEEE. 2022, 32(9), pp. 5859-5873. ISSN 1051-8215. eISSN 1558-2205. Available under: doi: 10.1109/TCSVT.2022.3163860
BibTex
@article{Lin2022Large-57160,
  year={2022},
  doi={10.1109/TCSVT.2022.3163860},
  title={Large-scale crowdsourced subjective assessment of picturewise just noticeable difference},
  number={9},
  volume={32},
  issn={1051-8215},
  journal={IEEE Transactions on Circuits and Systems for Video Technology},
  pages={5859--5873},
  author={Lin, Hanhe and Chen, Guangan and Jenadeleh, Mohsen and Hosu, Vlad and Reips, Ulf-Dietrich and Hamzaoui, Raouf and Saupe, Dietmar}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57160">
    <dc:creator>Reips, Ulf-Dietrich</dc:creator>
    <dc:creator>Hosu, Vlad</dc:creator>
    <dc:contributor>Reips, Ulf-Dietrich</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-05T08:13:03Z</dc:date>
    <dc:contributor>Chen, Guangan</dc:contributor>
    <dc:contributor>Hosu, Vlad</dc:contributor>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57160/1/Lin_2-54g16qw29m6b7.pdf"/>
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Hamzaoui, Raouf</dc:contributor>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/57160/1/Lin_2-54g16qw29m6b7.pdf"/>
    <dc:creator>Saupe, Dietmar</dc:creator>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Hamzaoui, Raouf</dc:creator>
    <dc:language>eng</dc:language>
    <dc:creator>Chen, Guangan</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2022</dcterms:issued>
    <dc:contributor>Saupe, Dietmar</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-04-05T08:13:03Z</dcterms:available>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57160"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43"/>
    <dc:contributor>Jenadeleh, Mohsen</dc:contributor>
    <dc:creator>Lin, Hanhe</dc:creator>
    <dc:creator>Jenadeleh, Mohsen</dc:creator>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:abstract xml:lang="eng">The picturewise just noticeable difference (PJND) for a given image, compression scheme, and subject is the smallest distortion level that the subject can perceive when the image is compressed with this compression scheme. The PJND can be used to determine the compression level at which a given proportion of the population does not notice any distortion in the compressed image. To obtain accurate and diverse results, the PJND must be determined for a large number of subjects and images. This is particularly important when experimental PJND data are used to train deep learning models that can predict a probability distribution model of the PJND for a new image. To date, such subjective studies have been carried out in laboratory environments. However, the number of participants and images in all existing PJND studies is very small because of the challenges involved in setting up laboratory experiments. To address this limitation, we develop a framework to conduct PJND assessments via crowdsourcing. We use a new technique based on slider adjustment and a flicker test to determine the PJND. A pilot study demonstrated that our technique could decrease the study duration by 50% and double the perceptual sensitivity compared to the standard binary search approach that successively compares a test image side by side with its reference image. Our framework includes a robust and systematic scheme to ensure the reliability of the crowdsourced results. Using 1,008 source images and distorted versions obtained with JPEG and BPG compression, we apply our crowdsourcing framework to build the largest PJND dataset, KonJND-1k (Konstanz just noticeable difference 1k dataset). A total of 503 workers participated in the study, yielding 61,030 PJND samples that resulted in an average of 42 samples per source image. The KonJND-1k dataset is available at http://database.mmsp-kn.de/konjnd-1k-database.html.</dcterms:abstract>
    <dcterms:title>Large-scale crowdsourced subjective assessment of picturewise just noticeable difference</dcterms:title>
    <dc:contributor>Lin, Hanhe</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja
Diese Publikation teilen