Sublabel-Accurate Convex Relaxation with Total Generalized Variation Regularization
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We propose a novel idea to introduce regularization based on second order total generalized variation (TGV) into optimization frameworks based on functional lifting. The proposed formulation extends a recent sublabel-accurate relaxation for multi-label problems and thus allows for accurate solutions using only a small number of labels, significantly improving over previous approaches towards lifting the total generalized variation. Moreover, even recent sublabel accurate methods exhibit staircasing artifacts when used in conjunction with common first order regularizers such as the total variation (TV). This becomes very obvious for example when computing derivatives of disparity maps computed with these methods to obtain normals, which immediately reveals their local flatness and yields inaccurate normal maps. We show that our approach is effective in reducing these artifacts, obtaining disparity maps with a smooth normal field in a single optimization pass.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STRECKE, Michael, Bastian GOLDLÜCKE, 2019. Sublabel-Accurate Convex Relaxation with Total Generalized Variation Regularization. 40th German Conference, GCPR 2018. Stuttgart, 9. Okt. 2018 - 12. Okt. 2018. In: BROX, Thomas, ed., Andrés BRUHN, ed., Mario FRITZ, ed.. Pattern Recognition. Cham: Springer Nature Switzerland AG, 2019, pp. 263-277. ISBN 978-3-030-12938-5. Available under: doi: 10.1007/978-3-030-12939-2_19BibTex
@inproceedings{Strecke2019Subla-57128, year={2019}, doi={10.1007/978-3-030-12939-2_19}, title={Sublabel-Accurate Convex Relaxation with Total Generalized Variation Regularization}, isbn={978-3-030-12938-5}, publisher={Springer Nature Switzerland AG}, address={Cham}, booktitle={Pattern Recognition}, pages={263--277}, editor={Brox, Thomas and Bruhn, Andrés and Fritz, Mario}, author={Strecke, Michael and Goldlücke, Bastian} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57128"> <dc:contributor>Strecke, Michael</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-31T14:07:21Z</dc:date> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dc:creator>Strecke, Michael</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-31T14:07:21Z</dcterms:available> <dcterms:issued>2019</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:title>Sublabel-Accurate Convex Relaxation with Total Generalized Variation Regularization</dcterms:title> <dcterms:abstract xml:lang="eng">We propose a novel idea to introduce regularization based on second order total generalized variation (TGV) into optimization frameworks based on functional lifting. The proposed formulation extends a recent sublabel-accurate relaxation for multi-label problems and thus allows for accurate solutions using only a small number of labels, significantly improving over previous approaches towards lifting the total generalized variation. Moreover, even recent sublabel accurate methods exhibit staircasing artifacts when used in conjunction with common first order regularizers such as the total variation (TV). This becomes very obvious for example when computing derivatives of disparity maps computed with these methods to obtain normals, which immediately reveals their local flatness and yields inaccurate normal maps. We show that our approach is effective in reducing these artifacts, obtaining disparity maps with a smooth normal field in a single optimization pass.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Goldlücke, Bastian</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57128"/> </rdf:Description> </rdf:RDF>