Sublabel-Accurate Convex Relaxation with Total Generalized Variation Regularization

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
European Union (EU): 336978
Projekt
LIA - Light Field Imaging and Analysis
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
BROX, Thomas, ed., Andrés BRUHN, ed., Mario FRITZ, ed.. Pattern Recognition. Cham: Springer Nature Switzerland AG, 2019, pp. 263-277. ISBN 978-3-030-12938-5. Available under: doi: 10.1007/978-3-030-12939-2_19
Zusammenfassung

We propose a novel idea to introduce regularization based on second order total generalized variation (TGV) into optimization frameworks based on functional lifting. The proposed formulation extends a recent sublabel-accurate relaxation for multi-label problems and thus allows for accurate solutions using only a small number of labels, significantly improving over previous approaches towards lifting the total generalized variation. Moreover, even recent sublabel accurate methods exhibit staircasing artifacts when used in conjunction with common first order regularizers such as the total variation (TV). This becomes very obvious for example when computing derivatives of disparity maps computed with these methods to obtain normals, which immediately reveals their local flatness and yields inaccurate normal maps. We show that our approach is effective in reducing these artifacts, obtaining disparity maps with a smooth normal field in a single optimization pass.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
40th German Conference, GCPR 2018, 9. Okt. 2018 - 12. Okt. 2018, Stuttgart
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690STRECKE, Michael, Bastian GOLDLÜCKE, 2019. Sublabel-Accurate Convex Relaxation with Total Generalized Variation Regularization. 40th German Conference, GCPR 2018. Stuttgart, 9. Okt. 2018 - 12. Okt. 2018. In: BROX, Thomas, ed., Andrés BRUHN, ed., Mario FRITZ, ed.. Pattern Recognition. Cham: Springer Nature Switzerland AG, 2019, pp. 263-277. ISBN 978-3-030-12938-5. Available under: doi: 10.1007/978-3-030-12939-2_19
BibTex
@inproceedings{Strecke2019Subla-57128,
  year={2019},
  doi={10.1007/978-3-030-12939-2_19},
  title={Sublabel-Accurate Convex Relaxation with Total Generalized Variation Regularization},
  isbn={978-3-030-12938-5},
  publisher={Springer Nature Switzerland AG},
  address={Cham},
  booktitle={Pattern Recognition},
  pages={263--277},
  editor={Brox, Thomas and Bruhn, Andrés and Fritz, Mario},
  author={Strecke, Michael and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/57128">
    <dc:contributor>Strecke, Michael</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-31T14:07:21Z</dc:date>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dc:creator>Strecke, Michael</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-03-31T14:07:21Z</dcterms:available>
    <dcterms:issued>2019</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:title>Sublabel-Accurate Convex Relaxation with Total Generalized Variation Regularization</dcterms:title>
    <dcterms:abstract xml:lang="eng">We propose a novel idea to introduce regularization based on second order total generalized variation (TGV) into optimization frameworks based on functional lifting. The proposed formulation extends a recent sublabel-accurate relaxation for multi-label problems and thus allows for accurate solutions using only a small number of labels, significantly improving over previous approaches towards lifting the total generalized variation. Moreover, even recent sublabel accurate methods exhibit staircasing artifacts when used in conjunction with common first order regularizers such as the total variation (TV). This becomes very obvious for example when computing derivatives of disparity maps computed with these methods to obtain normals, which immediately reveals their local flatness and yields inaccurate normal maps. We show that our approach is effective in reducing these artifacts, obtaining disparity maps with a smooth normal field in a single optimization pass.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/57128"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen