Microscopic diffusion coefficients of dumbbell- and spherocylinder-shaped colloids and their application in simulations of crowded monolayers
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We explore the diffusion properties of colloidal particles with dumbbell and spherocylinder shapes using a hydrodynamic bead-shell approach and additional Brownian dynamics (BD) simulations. By applying the bead-shell method, we determine empirical formulas for the microscopic diffusion coefficients. A comparison of these formulas and established experimental and theoretical results shows remarkable agreement. For example, the maximum relative discrepancy found for dumbbells is less than 5%. As an application example of the empirical formulas, we perform two-dimensional (2D) BD simulations based on a single dumbbell or spherocylinder in a suspension of spheres and calculate the resulting effective long-time diffusion coefficients. The performed BD simulations can be compared to quasi-2D systems such as colloids confined at the interface of two fluids. We find that the effective diffusion coefficient of translation mostly depends on the sphere area fraction ϕ, while the effective diffusion coefficient of rotation is influenced by the aspect ratio and ϕ. Furthermore, the effective rotational diffusion constant seems to depend on the particle shape with the corresponding implementation of the interactions. In the resolution limit of our methods, the shape-dependent differences of the microscopic diffusion coefficients and the long-time diffusion constant of translation are negligible in the first approximation. The determined empirical formulas for the microscopic diffusion coefficients add to the knowledge of the diffusion of anisotropic particles, and they can be used in countless future studies.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LÜDERS, Anton, Ellen ZANDER, Peter NIELABA, 2021. Microscopic diffusion coefficients of dumbbell- and spherocylinder-shaped colloids and their application in simulations of crowded monolayers. In: The Journal of Chemical Physics. American Institute of Physics (AIP). 2021, 155(10), 104113. ISSN 0021-9606. eISSN 1089-7690. Available under: doi: 10.1063/5.0060063BibTex
@article{Luders2021-09-14Micro-56648, year={2021}, doi={10.1063/5.0060063}, title={Microscopic diffusion coefficients of dumbbell- and spherocylinder-shaped colloids and their application in simulations of crowded monolayers}, number={10}, volume={155}, issn={0021-9606}, journal={The Journal of Chemical Physics}, author={Lüders, Anton and Zander, Ellen and Nielaba, Peter}, note={Article Number: 104113} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56648"> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Microscopic diffusion coefficients of dumbbell- and spherocylinder-shaped colloids and their application in simulations of crowded monolayers</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2021-09-14</dcterms:issued> <dc:contributor>Nielaba, Peter</dc:contributor> <dc:creator>Nielaba, Peter</dc:creator> <dc:creator>Lüders, Anton</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-23T08:08:27Z</dcterms:available> <dc:creator>Zander, Ellen</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56648"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Lüders, Anton</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-23T08:08:27Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:abstract xml:lang="eng">We explore the diffusion properties of colloidal particles with dumbbell and spherocylinder shapes using a hydrodynamic bead-shell approach and additional Brownian dynamics (BD) simulations. By applying the bead-shell method, we determine empirical formulas for the microscopic diffusion coefficients. A comparison of these formulas and established experimental and theoretical results shows remarkable agreement. For example, the maximum relative discrepancy found for dumbbells is less than 5%. As an application example of the empirical formulas, we perform two-dimensional (2D) BD simulations based on a single dumbbell or spherocylinder in a suspension of spheres and calculate the resulting effective long-time diffusion coefficients. The performed BD simulations can be compared to quasi-2D systems such as colloids confined at the interface of two fluids. We find that the effective diffusion coefficient of translation mostly depends on the sphere area fraction ϕ, while the effective diffusion coefficient of rotation is influenced by the aspect ratio and ϕ. Furthermore, the effective rotational diffusion constant seems to depend on the particle shape with the corresponding implementation of the interactions. In the resolution limit of our methods, the shape-dependent differences of the microscopic diffusion coefficients and the long-time diffusion constant of translation are negligible in the first approximation. The determined empirical formulas for the microscopic diffusion coefficients add to the knowledge of the diffusion of anisotropic particles, and they can be used in countless future studies.</dcterms:abstract> <dc:contributor>Zander, Ellen</dc:contributor> </rdf:Description> </rdf:RDF>