KOPS - The Institutional Repository of the University of Konstanz

Optimal Feedback Law Recovery by Gradient-Augmented Sparse Polynomial Regression

Optimal Feedback Law Recovery by Gradient-Augmented Sparse Polynomial Regression

Cite This

Files in this item

Checksum: MD5:e27243e6d21909e2bba5608333ecb1bf

AZMI, Behzad, Dante KALISE, Karl KUNISCH, 2021. Optimal Feedback Law Recovery by Gradient-Augmented Sparse Polynomial Regression. In: Journal of Machine Learning Research (JMLR). Microtome Publishing. 22, 48. ISSN 1532-4435. eISSN 1533-7928

@article{Azmi2021Optim-56521, title={Optimal Feedback Law Recovery by Gradient-Augmented Sparse Polynomial Regression}, url={https://jmlr.org/papers/v22/20-755.html}, year={2021}, volume={22}, issn={1532-4435}, journal={Journal of Machine Learning Research (JMLR)}, author={Azmi, Behzad and Kalise, Dante and Kunisch, Karl}, note={Article Number: 48} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/56521"> <dc:rights>terms-of-use</dc:rights> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56521"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Azmi, Behzad</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-10T14:38:56Z</dc:date> <dc:creator>Azmi, Behzad</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Kalise, Dante</dc:contributor> <dcterms:abstract xml:lang="eng">A sparse regression approach for the computation of high-dimensional optimal feedback laws arising in deterministic nonlinear control is proposed. The approach exploits the control-theoretical link between Hamilton-Jacobi-Bellman PDEs characterizing the value function of the optimal control problems, and rst-order optimality conditions via Pontryagin's Maximum Principle. The latter is used as a representation formula to recover the value function and its gradient at arbitrary points in the space-time domain through the solution of a two-point boundary value problem. After generating a dataset consisting of di erent state-value pairs, a hyperbolic cross polynomial model for the value function is tted using a LASSO regression. An extended set of low and high-dimensional numerical tests in nonlinear optimal control reveal that enriching the dataset with gradient information reduces the number of training samples, and that the sparse polynomial regression consistently yields a feedback law of lower complexity.</dcterms:abstract> <dcterms:title>Optimal Feedback Law Recovery by Gradient-Augmented Sparse Polynomial Regression</dcterms:title> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Kunisch, Karl</dc:creator> <dc:creator>Kalise, Dante</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-02-10T14:38:56Z</dcterms:available> <dc:contributor>Kunisch, Karl</dc:contributor> <dcterms:issued>2021</dcterms:issued> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56521/1/Azmi_2-ziodqjb4nyrb7.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56521/1/Azmi_2-ziodqjb4nyrb7.pdf"/> </rdf:Description> </rdf:RDF>

Downloads since Feb 10, 2022 (Information about access statistics)

Azmi_2-ziodqjb4nyrb7.pdf 96

This item appears in the following Collection(s)

Search KOPS


Browse

My Account