Augmenting Digital Sheet Music through Visual Analytics
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Music analysis tasks, such as structure identification and modulation detection, are tedious when performed manually due to the complexity of the common music notation (CMN). Fully automated analysis instead misses human intuition about relevance. Existing approaches use abstract data-driven visualizations to assist music analysis but lack a suitable connection to the CMN. Therefore, music analysts often prefer to remain in their familiar context. Our approach enhances the traditional analysis workflow by complementing CMN with interactive visualization entities as minimally intrusive augmentations. Gradual step-wise transitions empower analysts to retrace and comprehend the relationship between the CMN and abstract data representations. We leverage glyph-based visualizations for harmony, rhythm and melody to demonstrate our technique's applicability. Design-driven visual query filters enable analysts to investigate statistical and semantic patterns on various abstraction levels. We conducted pair analytics sessions with 16 participants of different proficiency levels to gather qualitative feedback about the intuitiveness, traceability and understandability of our approach. The results show that MusicVis supports music analysts in getting new insights about feature characteristics while increasing their engagement and willingness to explore.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MILLER, Matthias, Daniel FÜRST, Hanna SCHÄFER, Daniel A. KEIM, Mennatallah EL-ASSADY, 2022. Augmenting Digital Sheet Music through Visual Analytics. In: Computer Graphics Forum. Wiley. 2022, 41(1), pp. 301-316. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.14436BibTex
@article{Miller2022-02Augme-56142, year={2022}, doi={10.1111/cgf.14436}, title={Augmenting Digital Sheet Music through Visual Analytics}, number={1}, volume={41}, issn={0167-7055}, journal={Computer Graphics Forum}, pages={301--316}, author={Miller, Matthias and Fürst, Daniel and Schäfer, Hanna and Keim, Daniel A. and El-Assady, Mennatallah} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/56142"> <dc:rights>Attribution-NonCommercial 4.0 International</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56142/1/Miller_2-134k2c5p2dlur3.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/56142/1/Miller_2-134k2c5p2dlur3.pdf"/> <dc:creator>El-Assady, Mennatallah</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/56142"/> <dcterms:abstract xml:lang="eng">Music analysis tasks, such as structure identification and modulation detection, are tedious when performed manually due to the complexity of the common music notation (CMN). Fully automated analysis instead misses human intuition about relevance. Existing approaches use abstract data-driven visualizations to assist music analysis but lack a suitable connection to the CMN. Therefore, music analysts often prefer to remain in their familiar context. Our approach enhances the traditional analysis workflow by complementing CMN with interactive visualization entities as minimally intrusive augmentations. Gradual step-wise transitions empower analysts to retrace and comprehend the relationship between the CMN and abstract data representations. We leverage glyph-based visualizations for harmony, rhythm and melody to demonstrate our technique's applicability. Design-driven visual query filters enable analysts to investigate statistical and semantic patterns on various abstraction levels. We conducted pair analytics sessions with 16 participants of different proficiency levels to gather qualitative feedback about the intuitiveness, traceability and understandability of our approach. The results show that MusicVis supports music analysts in getting new insights about feature characteristics while increasing their engagement and willingness to explore.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-17T09:41:02Z</dcterms:available> <dc:creator>Schäfer, Hanna</dc:creator> <dcterms:title>Augmenting Digital Sheet Music through Visual Analytics</dcterms:title> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2022-01-17T09:41:02Z</dc:date> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc/4.0/"/> <dc:creator>Miller, Matthias</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Fürst, Daniel</dc:creator> <dc:language>eng</dc:language> <dc:contributor>Miller, Matthias</dc:contributor> <dc:contributor>Schäfer, Hanna</dc:contributor> <dcterms:issued>2022-02</dcterms:issued> <dc:contributor>Fürst, Daniel</dc:contributor> </rdf:Description> </rdf:RDF>