A priori error estimates for the finite element discretization of optimal distributed control problems governed by the biharmonic operator

No Thumbnail Available
Files
There are no files associated with this item.
Date
2013
Authors
Rannacher, Rolf
Wollner, Winnifried
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Calcolo ; 50 (2013). - pp. 165-193. - Springer. - ISSN 0008-0624. - eISSN 1126-5434
Abstract
In this article a priori error estimates are derived for the finite element discretization of optimal distributed control problems governed by the biharmonic operator. The state equation is discretized in primal mixed form using continuous piecewise biquadratic finite elements, while piecewise constant approximations are used for the control. The error estimates derived for the state variable as well as that for the control are order-optimal on general unstructured meshes. However, on uniform meshes not all error estimates are optimal due to the low-order control approximation. All theoretical results are confirmed by numerical tests.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Optimal distributed control, Biharmonic operator, Mixed finite element method, A priori error estimates
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690FREI, Stefan, Rolf RANNACHER, Winnifried WOLLNER, 2013. A priori error estimates for the finite element discretization of optimal distributed control problems governed by the biharmonic operator. In: Calcolo. Springer. 50, pp. 165-193. ISSN 0008-0624. eISSN 1126-5434. Available under: doi: 10.1007/s10092-012-0063-3
BibTex
@article{Frei2013prior-55821,
  year={2013},
  doi={10.1007/s10092-012-0063-3},
  title={A priori error estimates for the finite element discretization of optimal distributed control problems governed by the biharmonic operator},
  volume={50},
  issn={0008-0624},
  journal={Calcolo},
  pages={165--193},
  author={Frei, Stefan and Rannacher, Rolf and Wollner, Winnifried}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55821">
    <dc:creator>Frei, Stefan</dc:creator>
    <dc:contributor>Rannacher, Rolf</dc:contributor>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55821"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-09T10:44:11Z</dcterms:available>
    <dc:contributor>Frei, Stefan</dc:contributor>
    <dcterms:title>A priori error estimates for the finite element discretization of optimal distributed control problems governed by the biharmonic operator</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-09T10:44:11Z</dc:date>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Rannacher, Rolf</dc:creator>
    <dcterms:abstract xml:lang="eng">In this article a priori error estimates are derived for the finite element discretization of optimal distributed control problems governed by the biharmonic operator. The state equation is discretized in primal mixed form using continuous piecewise biquadratic finite elements, while piecewise constant approximations are used for the control. The error estimates derived for the state variable as well as that for the control are order-optimal on general unstructured meshes. However, on uniform meshes not all error estimates are optimal due to the low-order control approximation. All theoretical results are confirmed by numerical tests.</dcterms:abstract>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2013</dcterms:issued>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:contributor>Wollner, Winnifried</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Wollner, Winnifried</dc:creator>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed
Unknown