An edge-based pressure stabilization technique for finite elements on arbitrarily anisotropic meshes

Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2019
Autor:innen
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
International Journal for Numerical Methods in Fluids ; 89 (2019), 10. - S. 407-429. - Wiley-Blackwell. - ISSN 0271-2091. - eISSN 1097-0363
Zusammenfassung
In this paper, we analyze a stabilized equal-order finite element approximation for the Stokes equations on anisotropic meshes. In particular, we allow arbitrary anisotropies in a subdomain, for example, along the boundary of the domain, with the only condition that a maximum angle is fulfilled in each element. This discretization is motivated by applications on moving domains as arising, for example, in fluid-structure interaction or multiphase-flow problems. To deal with the anisotropies, we define a modification of the original continuous interior penalty stabilization approach. We show analytically the discrete stability of the method and convergence of order O(h3/2) in the energy norm and O(h5/2) in the L2-norm of the velocities. We present numerical examples for a linear Stokes problem and for a nonlinear fluid-structure interaction problem, which substantiate the analytical results and show the capabilities of the approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690FREI, Stefan, 2019. An edge-based pressure stabilization technique for finite elements on arbitrarily anisotropic meshes. In: International Journal for Numerical Methods in Fluids. Wiley-Blackwell. 89(10), pp. 407-429. ISSN 0271-2091. eISSN 1097-0363. Available under: doi: 10.1002/fld.4701
BibTex
@article{Frei2019edgeb-55771,
  year={2019},
  doi={10.1002/fld.4701},
  title={An edge-based pressure stabilization technique for finite elements on arbitrarily anisotropic meshes},
  number={10},
  volume={89},
  issn={0271-2091},
  journal={International Journal for Numerical Methods in Fluids},
  pages={407--429},
  author={Frei, Stefan}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55771">
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T10:14:44Z</dc:date>
    <dc:contributor>Frei, Stefan</dc:contributor>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:language>eng</dc:language>
    <dc:rights>terms-of-use</dc:rights>
    <dcterms:abstract xml:lang="eng">In this paper, we analyze a stabilized equal-order finite element approximation for the Stokes equations on anisotropic meshes. In particular, we allow arbitrary anisotropies in a subdomain, for example, along the boundary of the domain, with the only condition that a maximum angle is fulfilled in each element. This discretization is motivated by applications on moving domains as arising, for example, in fluid-structure interaction or multiphase-flow problems. To deal with the anisotropies, we define a modification of the original continuous interior penalty stabilization approach. We show analytically the discrete stability of the method and convergence of order O(h&lt;sup&gt;3/2&lt;/sup&gt;) in the energy norm and O(h&lt;sup&gt;5/2&lt;/sup&gt;) in the L&lt;sup&gt;2&lt;/sup&gt;-norm of the velocities. We present numerical examples for a linear Stokes problem and for a nonlinear fluid-structure interaction problem, which substantiate the analytical results and show the capabilities of the approach.</dcterms:abstract>
    <dcterms:title>An edge-based pressure stabilization technique for finite elements on arbitrarily anisotropic meshes</dcterms:title>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2019</dcterms:issued>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55771"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-07T10:14:44Z</dcterms:available>
    <dc:creator>Frei, Stefan</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Ja