Approximation of constrained average cost Marks

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

SUTTER, Tobias, Peyman Mohajerin ESFAHANI, John LYGEROS, 2014. Approximation of constrained average cost Marks. 53rd IEEE Conference on Decision and Control. Los Angeles, CA, Dec 15, 2014 - Dec 17, 2014. In: 53rd IEEE Conference on Decision and Control. Piscataway, NJ:IEEE, pp. 6597-6602. ISSN 0191-2216. ISBN 978-1-4673-6090-6. Available under: doi: 10.1109/CDC.2014.7040424

@inproceedings{Sutter2014Appro-55740, title={Approximation of constrained average cost Marks}, year={2014}, doi={10.1109/CDC.2014.7040424}, isbn={978-1-4673-6090-6}, issn={0191-2216}, address={Piscataway, NJ}, publisher={IEEE}, booktitle={53rd IEEE Conference on Decision and Control}, pages={6597--6602}, author={Sutter, Tobias and Esfahani, Peyman Mohajerin and Lygeros, John} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/55740"> <dc:creator>Lygeros, John</dc:creator> <dc:creator>Esfahani, Peyman Mohajerin</dc:creator> <dc:contributor>Lygeros, John</dc:contributor> <dc:creator>Sutter, Tobias</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:rights>terms-of-use</dc:rights> <dcterms:title>Approximation of constrained average cost Marks</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:abstract xml:lang="eng">This paper considers discrete-time constrained Markov control processes (MCPs) under the long-run expected average cost optimality criterion. For Borel state and action spaces a two-step method is presented to numerically approximate the optimal value of this constrained MCPs. The proposed method employs the infinite-dimensional linear programming (LP) representation of the constrained MCPs. In particular, we establish a bridge from the infinite-dimensional LP characterization to a finite LP consisting of a first asymptotic step and a second step that provides explicit bounds on the approximation error. Finally, the applicability and performance of the theoretical results are demonstrated on an LQG example.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55740"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:53:21Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:issued>2014</dcterms:issued> <dc:contributor>Esfahani, Peyman Mohajerin</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Sutter, Tobias</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T12:53:21Z</dc:date> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account