Generalized Maximum Entropy Estimation

Cite This

Files in this item

Checksum: MD5:eeb6f46d017c10c6360553e86b2333af

SUTTER, Tobias, David SUTTER, Peyman Mohajerin ESFAHANI, John LYGEROS, 2019. Generalized Maximum Entropy Estimation. In: Journal of Machine Learning Research. Microtome Publishing. 20, 138. ISSN 1532-4435. eISSN 1533-7928

@article{Sutter2019Gener-55731, title={Generalized Maximum Entropy Estimation}, url={https://jmlr.org/papers/v20/17-486.html}, year={2019}, volume={20}, issn={1532-4435}, journal={Journal of Machine Learning Research}, author={Sutter, Tobias and Sutter, David and Esfahani, Peyman Mohajerin and Lygeros, John}, note={Article Number: 138} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/55731"> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55731/1/Sutter_2-1svqydo8rxhan3.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T11:58:34Z</dcterms:available> <dc:creator>Sutter, David</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-12-02T11:58:34Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dcterms:issued>2019</dcterms:issued> <dc:contributor>Esfahani, Peyman Mohajerin</dc:contributor> <dc:contributor>Sutter, Tobias</dc:contributor> <dc:contributor>Lygeros, John</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/55731/1/Sutter_2-1svqydo8rxhan3.pdf"/> <dc:creator>Lygeros, John</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55731"/> <dcterms:title>Generalized Maximum Entropy Estimation</dcterms:title> <dc:contributor>Sutter, David</dc:contributor> <dcterms:abstract xml:lang="eng">We consider the problem of estimating a probability distribution that maximizes the entropy while satisfying a finite number of moment constraints, possibly corrupted by noise. Based on duality of convex programming, we present a novel approximation scheme using a smoothed fast gradient method that is equipped with explicit bounds on the approximation error. We further demonstrate how the presented scheme can be used for approximating the chemical master equation through the zero-information moment closure method, and for an approximate dynamic programming approach in the context of constrained Markov decision processes with uncountable state and action spaces.</dcterms:abstract> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <dc:creator>Esfahani, Peyman Mohajerin</dc:creator> <dc:creator>Sutter, Tobias</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> </rdf:Description> </rdf:RDF>

Downloads since Dec 2, 2021 (Information about access statistics)

Sutter_2-1svqydo8rxhan3.pdf 66

This item appears in the following Collection(s)

Search KOPS


Browse

My Account