Flag matroids : algebra and geometry

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

CAMERON, Amanda, Rodica DINU, Mateusz MICHALEK, Tim SEYNNAEVE, 2018. Flag matroids : algebra and geometry

@unpublished{Cameron2018matro-55481, title={Flag matroids : algebra and geometry}, year={2018}, author={Cameron, Amanda and Dinu, Rodica and Michalek, Mateusz and Seynnaeve, Tim} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/55481"> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:creator>Dinu, Rodica</dc:creator> <dcterms:abstract xml:lang="eng">Matroids are ubiquitous in modern combinatorics. As discovered by Gelfand, Goresky, MacPherson and Serganova there is a beautiful connection between matroid theory and the geometry of Grassmannians: realizable matroids correspond to torus orbits in Grassmannians. Further, as observed by Fink and Speyer general matroids correspond to classes in the K-theory of Grassmannians. This yields in particular a geometric description of the Tutte polynomial. In this review we describe all these constructions in detail, and moreover we generalise some of them to polymatroids. More precisely, we study the class of flag matroids and their relations to flag varieties. In this way, we obtain an analogue of the Tutte polynomial for flag matroids.</dcterms:abstract> <dc:contributor>Cameron, Amanda</dc:contributor> <dcterms:title>Flag matroids : algebra and geometry</dcterms:title> <dc:contributor>Dinu, Rodica</dc:contributor> <dc:contributor>Seynnaeve, Tim</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Seynnaeve, Tim</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T15:53:16Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55481"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T15:53:16Z</dcterms:available> <dc:creator>Michalek, Mateusz</dc:creator> <dcterms:issued>2018</dcterms:issued> <dc:creator>Cameron, Amanda</dc:creator> <dc:contributor>Michalek, Mateusz</dc:contributor> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account