An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization
An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization
Vorschaubild nicht verfügbar
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2020
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
eISSN
item.preview.dc.identifier.isbn
Bibliografische Daten
Verlag
Schriftenreihe
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
EU-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Preprint
Publikationsstatus
Published
Erschienen in
Zusammenfassung
In this contribution we device and analyze improved variants of the non-conforming dual approach for trust-region reduced basis (TR-RB) approximation of PDE-constrained parameter optimization that has recently been introduced in [Keil et al.. A non-conforming dual approach for adaptive Trust-Region Reduced Basis approximation of PDE-constrained optimization. arXiv:2006.09297, 2020]. The proposed methods use model order reduction techniques for parametrized PDEs to significantly reduce the computational demand of parameter optimization with PDE constraints in the context of large-scale or multi-scale applications. The adaptive TR approach allows to localize the reduction with respect to the parameter space along the path of optimization without wasting unnecessary resources in an offline phase. The improved variants employ projected Newton methods to solve the local optimization problems within each TR step to benefit from high convergence rates. This implies new strategies in constructing the RB spaces, together with an estimate for the approximation of the hessian. Moreover, we present a new proof of convergence of the TR-RB method based on infinite-dimensional arguments, not restricted to the particular case of an RB approximation and provide an a posteriori error estimate for the approximation of the optimal parameter. Numerical experiments demonstrate the efficiency of the proposed methods.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
510 Mathematik
Schlagwörter
Konferenz
Rezension
undefined / . - undefined, undefined. - (undefined; undefined)
Zitieren
ISO 690
BANHOLZER, Stefan, Tim KEIL, Luca MECHELLI, Mario OHLBERGER, Felix SCHINDLER, Stefan VOLKWEIN, 2020. An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimizationBibTex
@unpublished{Banholzer2020adapt-55475, year={2020}, title={An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization}, author={Banholzer, Stefan and Keil, Tim and Mechelli, Luca and Ohlberger, Mario and Schindler, Felix and Volkwein, Stefan} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/55475"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Ohlberger, Mario</dc:contributor> <dc:creator>Keil, Tim</dc:creator> <dc:contributor>Volkwein, Stefan</dc:contributor> <dc:creator>Schindler, Felix</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T14:07:42Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-11-08T14:07:42Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:creator>Banholzer, Stefan</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Keil, Tim</dc:contributor> <dc:creator>Volkwein, Stefan</dc:creator> <dcterms:title>An adaptive projected Newton non-conforming dual approach for trust-region reduced basis approximation of PDE-constrained parameter optimization</dcterms:title> <dc:contributor>Banholzer, Stefan</dc:contributor> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Mechelli, Luca</dc:contributor> <dcterms:issued>2020</dcterms:issued> <dc:contributor>Schindler, Felix</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/55475"/> <dc:creator>Mechelli, Luca</dc:creator> <dcterms:abstract xml:lang="eng">In this contribution we device and analyze improved variants of the non-conforming dual approach for trust-region reduced basis (TR-RB) approximation of PDE-constrained parameter optimization that has recently been introduced in [Keil et al.. A non-conforming dual approach for adaptive Trust-Region Reduced Basis approximation of PDE-constrained optimization. arXiv:2006.09297, 2020]. The proposed methods use model order reduction techniques for parametrized PDEs to significantly reduce the computational demand of parameter optimization with PDE constraints in the context of large-scale or multi-scale applications. The adaptive TR approach allows to localize the reduction with respect to the parameter space along the path of optimization without wasting unnecessary resources in an offline phase. The improved variants employ projected Newton methods to solve the local optimization problems within each TR step to benefit from high convergence rates. This implies new strategies in constructing the RB spaces, together with an estimate for the approximation of the hessian. Moreover, we present a new proof of convergence of the TR-RB method based on infinite-dimensional arguments, not restricted to the particular case of an RB approximation and provide an a posteriori error estimate for the approximation of the optimal parameter. Numerical experiments demonstrate the efficiency of the proposed methods.</dcterms:abstract> <dc:creator>Ohlberger, Mario</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> </rdf:Description> </rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja