Molecular tuning of CO2-to-ethylene conversion
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
Internationale Patentnummer
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
The electrocatalytic reduction of carbon dioxide, powered by renewable electricity, to produce valuable fuels and feedstocks provides a sustainable and carbon-neutral approach to the storage of energy produced by intermittent renewable sources1. However, the highly selective generation of economically desirable products such as ethylene from the carbon dioxide reduction reaction (CO2RR) remains a challenge2. Tuning the stabilities of intermediates to favour a desired reaction pathway can improve selectivity3-5, and this has recently been explored for the reaction on copper by controlling morphology6, grain boundaries7, facets8, oxidation state9 and dopants10. Unfortunately, the Faradaic efficiency for ethylene is still low in neutral media (60 per cent at a partial current density of 7 milliamperes per square centimetre in the best catalyst reported so far9), resulting in a low energy efficiency. Here we present a molecular tuning strategy-the functionalization of the surface of electrocatalysts with organic molecules-that stabilizes intermediates for more selective CO2RR to ethylene. Using electrochemical, operando/in situ spectroscopic and computational studies, we investigate the influence of a library of molecules, derived by electro-dimerization of arylpyridiniums11, adsorbed on copper. We find that the adhered molecules improve the stabilization of an 'atop-bound' CO intermediate (that is, an intermediate bound to a single copper atom), thereby favouring further reduction to ethylene. As a result of this strategy, we report the CO2RR to ethylene with a Faradaic efficiency of 72 per cent at a partial current density of 230 milliamperes per square centimetre in a liquid-electrolyte flow cell in a neutral medium. We report stable ethylene electrosynthesis for 190 hours in a system based on a membrane-electrode assembly that provides a full-cell energy efficiency of 20 per cent. We anticipate that this may be generalized to enable molecular strategies to complement heterogeneous catalysts by stabilizing intermediates through local molecular tuning.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
LI, Fengwang, Arnaud THEVENON, Alonso ROSAS-HERNÁNDEZ, Ziyun WANG, Yilin LI, Christine M. GABARDO, Jun LI, Theodor AGAPIE, Jonas C. PETERS, Edward H. SARGENT, 2020. Molecular tuning of CO2-to-ethylene conversion. In: Nature. Springer Nature. 2020, 577(7791), pp. 509-513. ISSN 0028-0836. eISSN 1476-4687. Available under: doi: 10.1038/s41586-019-1782-2BibTex
@article{Li2020Molec-54126, year={2020}, doi={10.1038/s41586-019-1782-2}, title={Molecular tuning of CO<sub>2</sub>-to-ethylene conversion}, number={7791}, volume={577}, issn={0028-0836}, journal={Nature}, pages={509--513}, author={Li, Fengwang and Thevenon, Arnaud and Rosas-Hernández, Alonso and Wang, Ziyun and Li, Yilin and Gabardo, Christine M. and Li, Jun and Agapie, Theodor and Peters, Jonas C. and Sargent, Edward H.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/54126"> <dc:language>eng</dc:language> <dc:creator>Agapie, Theodor</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-29T07:41:47Z</dcterms:available> <dc:contributor>Sargent, Edward H.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Gabardo, Christine M.</dc:contributor> <dc:creator>Li, Jun</dc:creator> <dc:contributor>Peters, Jonas C.</dc:contributor> <dc:contributor>Li, Fengwang</dc:contributor> <dc:contributor>Agapie, Theodor</dc:contributor> <dc:contributor>Li, Jun</dc:contributor> <dcterms:abstract xml:lang="eng">The electrocatalytic reduction of carbon dioxide, powered by renewable electricity, to produce valuable fuels and feedstocks provides a sustainable and carbon-neutral approach to the storage of energy produced by intermittent renewable sources1. However, the highly selective generation of economically desirable products such as ethylene from the carbon dioxide reduction reaction (CO<sub>2</sub>RR) remains a challenge2. Tuning the stabilities of intermediates to favour a desired reaction pathway can improve selectivity3-5, and this has recently been explored for the reaction on copper by controlling morphology6, grain boundaries7, facets8, oxidation state9 and dopants10. Unfortunately, the Faradaic efficiency for ethylene is still low in neutral media (60 per cent at a partial current density of 7 milliamperes per square centimetre in the best catalyst reported so far9), resulting in a low energy efficiency. Here we present a molecular tuning strategy-the functionalization of the surface of electrocatalysts with organic molecules-that stabilizes intermediates for more selective CO<sub>2</sub>RR to ethylene. Using electrochemical, operando/in situ spectroscopic and computational studies, we investigate the influence of a library of molecules, derived by electro-dimerization of arylpyridiniums11, adsorbed on copper. We find that the adhered molecules improve the stabilization of an 'atop-bound' CO intermediate (that is, an intermediate bound to a single copper atom), thereby favouring further reduction to ethylene. As a result of this strategy, we report the CO<sub>2</sub>RR to ethylene with a Faradaic efficiency of 72 per cent at a partial current density of 230 milliamperes per square centimetre in a liquid-electrolyte flow cell in a neutral medium. We report stable ethylene electrosynthesis for 190 hours in a system based on a membrane-electrode assembly that provides a full-cell energy efficiency of 20 per cent. We anticipate that this may be generalized to enable molecular strategies to complement heterogeneous catalysts by stabilizing intermediates through local molecular tuning.</dcterms:abstract> <dc:creator>Gabardo, Christine M.</dc:creator> <dc:creator>Peters, Jonas C.</dc:creator> <dcterms:title>Molecular tuning of CO<sub>2</sub>-to-ethylene conversion</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/54126"/> <dc:creator>Wang, Ziyun</dc:creator> <dc:creator>Rosas-Hernández, Alonso</dc:creator> <dc:creator>Li, Fengwang</dc:creator> <dcterms:issued>2020</dcterms:issued> <dc:rights>terms-of-use</dc:rights> <dc:creator>Li, Yilin</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Li, Yilin</dc:contributor> <dc:contributor>Wang, Ziyun</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:contributor>Thevenon, Arnaud</dc:contributor> <dc:creator>Sargent, Edward H.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/29"/> <dc:contributor>Rosas-Hernández, Alonso</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-06-29T07:41:47Z</dc:date> <dc:creator>Thevenon, Arnaud</dc:creator> </rdf:Description> </rdf:RDF>