Computation of Optimal Transport and Related Hedging Problems via Penalization and Neural Networks

No Thumbnail Available
Files
There are no files associated with this item.
Date
2021
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Applied Mathematics & Optimization ; 83 (2021), 2. - pp. 639-667. - Springer. - ISSN 0095-4616. - eISSN 1432-0606
Abstract
This paper presents a widely applicable approach to solving (multi-marginal, martingale) optimal transport and related problems via neural networks. The core idea is to penalize the optimization problem in its dual formulation and reduce it to a finite dimensional one which corresponds to optimizing a neural network with smooth objective function. We present numerical examples from optimal transport, martingale optimal transport, portfolio optimization under uncertainty and generative adversarial networks that showcase the generality and effectiveness of the approach.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690ECKSTEIN, Stephan, Michael KUPPER, 2021. Computation of Optimal Transport and Related Hedging Problems via Penalization and Neural Networks. In: Applied Mathematics & Optimization. Springer. 83(2), pp. 639-667. ISSN 0095-4616. eISSN 1432-0606. Available under: doi: 10.1007/s00245-019-09558-1
BibTex
@article{Eckstein2021Compu-53512,
  year={2021},
  doi={10.1007/s00245-019-09558-1},
  title={Computation of Optimal Transport and Related Hedging Problems via Penalization and Neural Networks},
  number={2},
  volume={83},
  issn={0095-4616},
  journal={Applied Mathematics & Optimization},
  pages={639--667},
  author={Eckstein, Stephan and Kupper, Michael}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53512">
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-28T11:50:30Z</dc:date>
    <dcterms:abstract xml:lang="eng">This paper presents a widely applicable approach to solving (multi-marginal, martingale) optimal transport and related problems via neural networks. The core idea is to penalize the optimization problem in its dual formulation and reduce it to a finite dimensional one which corresponds to optimizing a neural network with smooth objective function. We present numerical examples from optimal transport, martingale optimal transport, portfolio optimization under uncertainty and generative adversarial networks that showcase the generality and effectiveness of the approach.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:contributor>Kupper, Michael</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:issued>2021</dcterms:issued>
    <dc:creator>Kupper, Michael</dc:creator>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-28T11:50:30Z</dcterms:available>
    <dc:creator>Eckstein, Stephan</dc:creator>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53512"/>
    <dc:contributor>Eckstein, Stephan</dc:contributor>
    <dc:language>eng</dc:language>
    <dcterms:title>Computation of Optimal Transport and Related Hedging Problems via Penalization and Neural Networks</dcterms:title>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes