Curve Flows with a Global Forcing Term
Curve Flows with a Global Forcing Term
Date
2021
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
The Journal of Geometric Analysis ; 31 (2021), 8. - pp. 8414-8459. - Springer. - ISSN 1050-6926. - eISSN 1559-002X
Abstract
We consider embedded, smooth curves in the plane which are either closed or asymptotic to two lines. We study their behaviour under curve shortening flow with a global forcing term. We prove an analogue to Huisken’s distance comparison principle for curve shortening flow for initial curves whose local total curvature does not lie below −π and show that this condition is sharp. With that, we can exclude singularities in finite time for bounded forcing terms. For immortal flows of closed curves whose forcing terms provide non-vanishing enclosed area and bounded length, we show convexity in finite time and smooth and exponential convergence to a circle. In particular, all of the above holds for the area preserving curve shortening flow.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
Constrained curve flow, Area preserving curve shortening flow, Length preserving curve flow, Curve flow, Forcing term, Geometric flow
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
DITTBERNER, Friederike, 2021. Curve Flows with a Global Forcing Term. In: The Journal of Geometric Analysis. Springer. 31(8), pp. 8414-8459. ISSN 1050-6926. eISSN 1559-002X. Available under: doi: 10.1007/s12220-020-00600-1BibTex
@article{Dittberner2021-08Curve-53451, year={2021}, doi={10.1007/s12220-020-00600-1}, title={Curve Flows with a Global Forcing Term}, number={8}, volume={31}, issn={1050-6926}, journal={The Journal of Geometric Analysis}, pages={8414--8459}, author={Dittberner, Friederike} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/53451"> <dc:rights>Attribution 4.0 International</dc:rights> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dc:language>eng</dc:language> <dcterms:abstract xml:lang="eng">We consider embedded, smooth curves in the plane which are either closed or asymptotic to two lines. We study their behaviour under curve shortening flow with a global forcing term. We prove an analogue to Huisken’s distance comparison principle for curve shortening flow for initial curves whose local total curvature does not lie below −π and show that this condition is sharp. With that, we can exclude singularities in finite time for bounded forcing terms. For immortal flows of closed curves whose forcing terms provide non-vanishing enclosed area and bounded length, we show convexity in finite time and smooth and exponential convergence to a circle. In particular, all of the above holds for the area preserving curve shortening flow.</dcterms:abstract> <dc:creator>Dittberner, Friederike</dc:creator> <dc:contributor>Dittberner, Friederike</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:issued>2021-08</dcterms:issued> <dcterms:title>Curve Flows with a Global Forcing Term</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53451"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53451/1/Dittberner_2-1c1t6rwob567v8.pdf"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T14:00:00Z</dcterms:available> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/53451/1/Dittberner_2-1c1t6rwob567v8.pdf"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T14:00:00Z</dc:date> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
No
Refereed
Unknown