Curve Flows with a Global Forcing Term

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

DITTBERNER, Friederike, 2021. Curve Flows with a Global Forcing Term. In: The Journal of Geometric Analysis. Springer. ISSN 1050-6926. eISSN 1559-002X. Available under: doi: 10.1007/s12220-020-00600-1

@article{Dittberner2021-03-12Curve-53451, title={Curve Flows with a Global Forcing Term}, year={2021}, doi={10.1007/s12220-020-00600-1}, issn={1050-6926}, journal={The Journal of Geometric Analysis}, author={Dittberner, Friederike} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/53451"> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/53451"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:issued>2021-03-12</dcterms:issued> <dc:contributor>Dittberner, Friederike</dc:contributor> <dcterms:title>Curve Flows with a Global Forcing Term</dcterms:title> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T14:00:00Z</dcterms:available> <dcterms:abstract xml:lang="eng">We consider embedded, smooth curves in the plane which are either closed or asymptotic to two lines. We study their behaviour under curve shortening flow with a global forcing term. We prove an analogue to Huisken’s distance comparison principle for curve shortening flow for initial curves whose local total curvature does not lie below −π and show that this condition is sharp. With that, we can exclude singularities in finite time for bounded forcing terms. For immortal flows of closed curves whose forcing terms provide non-vanishing enclosed area and bounded length, we show convexity in finite time and smooth and exponential convergence to a circle. In particular, all of the above holds for the area preserving curve shortening flow.</dcterms:abstract> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-04-22T14:00:00Z</dc:date> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Dittberner, Friederike</dc:creator> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


Browse

My Account