Visual Analytics for Temporal Hypergraph Model Exploration

Cite This

Files in this item

Checksum: MD5:e428ab24b16a6be9837880bcff4a1de7

FISCHER, Maximilian T., Devanshu ARYA, Dirk STREEB, Daniel SEEBACHER, Daniel A. KEIM, Marcel WORRING, 2021. Visual Analytics for Temporal Hypergraph Model Exploration. In: IEEE Transactions on Visualization and Computer Graphics. IEEE. 27(2), pp. 550-560. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2020.3030408

@article{Fischer2021-02Visua-53080, title={Visual Analytics for Temporal Hypergraph Model Exploration}, year={2021}, doi={10.1109/TVCG.2020.3030408}, number={2}, volume={27}, issn={1077-2626}, journal={IEEE Transactions on Visualization and Computer Graphics}, pages={550--560}, author={Fischer, Maximilian T. and Arya, Devanshu and Streeb, Dirk and Seebacher, Daniel and Keim, Daniel A. and Worring, Marcel} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:title>Visual Analytics for Temporal Hypergraph Model Exploration</dcterms:title> <dspace:hasBitstream rdf:resource=""/> <dcterms:abstract xml:lang="eng">Many processes, from gene interaction in biology to computer networks to social media, can be modeled more precisely as temporal hypergraphs than by regular graphs. This is because hypergraphs generalize graphs by extending edges to connect any number of vertices, allowing complex relationships to be described more accurately and predict their behavior over time. However, the interactive exploration and seamless refinement of such hypergraph-based prediction models still pose a major challenge. We contribute Hyper-Matrix, a novel visual analytics technique that addresses this challenge through a tight coupling between machine-learning and interactive visualizations. In particular, the technique incorporates a geometric deep learning model as a blueprint for problem-specific models while integrating visualizations for graph-based and category-based data with a novel combination of interactions for an effective user-driven exploration of hypergraph models. To eliminate demanding context switches and ensure scalability, our matrix-based visualization provides drill-down capabilities across multiple levels of semantic zoom, from an overview of model predictions down to the content. We facilitate a focused analysis of relevant connections and groups based on interactive user-steering for filtering and search tasks, a dynamically modifiable partition hierarchy, various matrix reordering techniques, and interactive model feedback. We evaluate our technique in a case study and through formative evaluation with law enforcement experts using real-world internet forum communication data. The results show that our approach surpasses existing solutions in terms of scalability and applicability, enables the incorporation of domain knowledge, and allows for fast search-space traversal. With the proposed technique, we pave the way for the visual analytics of temporal hypergraphs in a wide variety of domains.</dcterms:abstract> <dc:creator>Seebacher, Daniel</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:rights rdf:resource=""/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <bibo:uri rdf:resource=""/> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource=""/> <dc:creator>Arya, Devanshu</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:issued>2021-02</dcterms:issued> <dc:contributor>Arya, Devanshu</dc:contributor> <dc:contributor>Seebacher, Daniel</dc:contributor> <dc:contributor>Streeb, Dirk</dc:contributor> <dc:contributor>Fischer, Maximilian T.</dc:contributor> <dc:creator>Fischer, Maximilian T.</dc:creator> <dc:date rdf:datatype="">2021-03-05T09:39:24Z</dc:date> <dcterms:isPartOf rdf:resource=""/> <dc:contributor>Worring, Marcel</dc:contributor> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Streeb, Dirk</dc:creator> <dc:language>eng</dc:language> <dc:creator>Worring, Marcel</dc:creator> <dcterms:available rdf:datatype="">2021-03-05T09:39:24Z</dcterms:available> </rdf:Description> </rdf:RDF>

Downloads since Mar 5, 2021 (Information about access statistics)

Fischer_2-1mfa2sxnu9atk9.pdf 190

This item appears in the following Collection(s)

Search KOPS


My Account