Learning through creativity : how creativity can help machine learning achieving deeper understanding
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
In this paper, I address the difficult task of analysing the nature of creativity by suggesting a more objective way of defining it. In particular, I propose a minimal account of creativity as autonomous problem-solving process. This definition is aimed at providing a baseline that researchers working in different fields can agree on and that can then be refined on a case by case basis. Developing our insight on the nature of creativity is increasingly necessary in the light of recent developments in the field of Artificial Intelligence. In the second part of the paper, I discuss how an investigation on the main features of human creativity can support the advancement of machine learning models in their current areas of weakness, such as intuition, originality, innovation, and flexibility. I suggest how methods such as modelling the human brain or simulation can be useful to extract the main mechanisms underlying creative processes and to translate them to machine learning applications. This can eventually aid both the development of machine learning systems that achieve a deeper and more intuitive understanding and our exploration of human creativity.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
MORUZZI, Caterina, 2020. Learning through creativity : how creativity can help machine learning achieving deeper understanding. In: Rifl – Rivista Italiana di Filosofia del Linguaggio. Università della Calabria. 2020, 14(2), pp. 35-46. ISSN 2036-6728. Available under: doi: 10.4396/AISB201904BibTex
@article{Moruzzi2020-12-30Learn-52833, year={2020}, doi={10.4396/AISB201904}, title={Learning through creativity : how creativity can help machine learning achieving deeper understanding}, number={2}, volume={14}, issn={2036-6728}, journal={Rifl – Rivista Italiana di Filosofia del Linguaggio}, pages={35--46}, author={Moruzzi, Caterina} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/52833"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dc:contributor>Moruzzi, Caterina</dc:contributor> <dcterms:issued>2020-12-30</dcterms:issued> <dc:creator>Moruzzi, Caterina</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52833/1/Moruzzi_2-1oiciuzv2z0q94.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:title>Learning through creativity : how creativity can help machine learning achieving deeper understanding</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52833/1/Moruzzi_2-1oiciuzv2z0q94.pdf"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-15T10:28:21Z</dcterms:available> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-15T10:28:21Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/40"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <dcterms:abstract xml:lang="eng">In this paper, I address the difficult task of analysing the nature of creativity by suggesting a more objective way of defining it. In particular, I propose a minimal account of creativity as autonomous problem-solving process. This definition is aimed at providing a baseline that researchers working in different fields can agree on and that can then be refined on a case by case basis. Developing our insight on the nature of creativity is increasingly necessary in the light of recent developments in the field of Artificial Intelligence. In the second part of the paper, I discuss how an investigation on the main features of human creativity can support the advancement of machine learning models in their current areas of weakness, such as intuition, originality, innovation, and flexibility. I suggest how methods such as modelling the human brain or simulation can be useful to extract the main mechanisms underlying creative processes and to translate them to machine learning applications. This can eventually aid both the development of machine learning systems that achieve a deeper and more intuitive understanding and our exploration of human creativity.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52833"/> </rdf:Description> </rdf:RDF>