Type of Publication: | Journal article |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-2-14zknbtjhlh0w1 |
Author: | Maltsev, Valerii; Pokojovy, Michael |
Year of publication: | 2021 |
Published in: | Mathematics ; 9 (2021), 2. - 114. - MDPI. - eISSN 2227-7390 |
DOI (citable link): | https://dx.doi.org/10.3390/math9020114 |
Summary: |
The Heath-Jarrow-Morton (HJM) model is a powerful instrument for describing the stochastic evolution of interest rate curves under no-arbitrage assumption. An important feature of the HJM approach is the fact that the drifts can be expressed as functions of respective volatilities and the underlying correlation structure. Aimed at researchers and practitioners, the purpose of this article is to present a self-contained, but concise review of the abstract HJM framework founded upon the theory of interest and stochastic partial differential equations in infinite dimensions. To illustrate the predictive power of this theory, we apply it to modeling and forecasting the US Treasury daily yield curve rates. We fit a non-parametric model to real data available from the US Department of the Treasury and illustrate its statistical performance in forecasting future yield curve rates.
|
Subject (DDC): | 510 Mathematics |
Keywords: | Heath-Jarrow-Morton model; zero-coupon bonds; forward rates; SPDE; arbitrage-free |
Link to License: | Attribution 4.0 International |
Refereed: | Unknown |
MALTSEV, Valerii, Michael POKOJOVY, 2021. Applying Heath-Jarrow-Morton Model to Forecasting the US Treasury Daily Yield Curve Rates. In: Mathematics. MDPI. 9(2), 114. eISSN 2227-7390. Available under: doi: 10.3390/math9020114
@article{Maltsev2021-01-06Apply-52794, title={Applying Heath-Jarrow-Morton Model to Forecasting the US Treasury Daily Yield Curve Rates}, year={2021}, doi={10.3390/math9020114}, number={2}, volume={9}, journal={Mathematics}, author={Maltsev, Valerii and Pokojovy, Michael}, note={Article Number: 114} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/52794"> <dc:contributor>Pokojovy, Michael</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52794/1/Maltsev_2-14zknbtjhlh0w1.pdf"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:abstract xml:lang="eng">The Heath-Jarrow-Morton (HJM) model is a powerful instrument for describing the stochastic evolution of interest rate curves under no-arbitrage assumption. An important feature of the HJM approach is the fact that the drifts can be expressed as functions of respective volatilities and the underlying correlation structure. Aimed at researchers and practitioners, the purpose of this article is to present a self-contained, but concise review of the abstract HJM framework founded upon the theory of interest and stochastic partial differential equations in infinite dimensions. To illustrate the predictive power of this theory, we apply it to modeling and forecasting the US Treasury daily yield curve rates. We fit a non-parametric model to real data available from the US Department of the Treasury and illustrate its statistical performance in forecasting future yield curve rates.</dcterms:abstract> <dcterms:title>Applying Heath-Jarrow-Morton Model to Forecasting the US Treasury Daily Yield Curve Rates</dcterms:title> <dc:creator>Pokojovy, Michael</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/52794"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-11T08:48:36Z</dcterms:available> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Maltsev, Valerii</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2021-02-11T08:48:36Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/52794/1/Maltsev_2-14zknbtjhlh0w1.pdf"/> <dcterms:issued>2021-01-06</dcterms:issued> <dc:language>eng</dc:language> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Maltsev, Valerii</dc:contributor> </rdf:Description> </rdf:RDF>
Maltsev_2-14zknbtjhlh0w1.pdf | 27 |