Inner-Model Reflection Principles

Cite This

Files in this item

Checksum: MD5:9b106a89b269ecb2084f3a7fed262f8e

BARTON, Neil, Andrés Eduardo CAICEDO, Gunter FUCHS, Joel David HAMKINS, Jonas REITZ, Ralf SCHINDLER, 2020. Inner-Model Reflection Principles. In: Studia Logica. Springer. 108(3), pp. 573-595. ISSN 0039-3215. eISSN 1572-8730. Available under: doi: 10.1007/s11225-019-09860-7

@article{Barton2020-06Inner-52643, title={Inner-Model Reflection Principles}, year={2020}, doi={10.1007/s11225-019-09860-7}, number={3}, volume={108}, issn={0039-3215}, journal={Studia Logica}, pages={573--595}, author={Barton, Neil and Caicedo, Andrés Eduardo and Fuchs, Gunter and Hamkins, Joel David and Reitz, Jonas and Schindler, Ralf} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dspace:hasBitstream rdf:resource=""/> <dcterms:issued>2020-06</dcterms:issued> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Fuchs, Gunter</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Reitz, Jonas</dc:creator> <dcterms:hasPart rdf:resource=""/> <dc:creator>Hamkins, Joel David</dc:creator> <dc:creator>Schindler, Ralf</dc:creator> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:rights rdf:resource=""/> <dc:contributor>Reitz, Jonas</dc:contributor> <dc:contributor>Barton, Neil</dc:contributor> <dcterms:isPartOf rdf:resource=""/> <dc:creator>Caicedo, Andrés Eduardo</dc:creator> <dc:date rdf:datatype="">2021-01-29T14:11:14Z</dc:date> <bibo:uri rdf:resource=""/> <dc:contributor>Hamkins, Joel David</dc:contributor> <dc:creator>Barton, Neil</dc:creator> <dc:contributor>Schindler, Ralf</dc:contributor> <dc:contributor>Caicedo, Andrés Eduardo</dc:contributor> <dcterms:abstract xml:lang="eng">We introduce and consider the inner-model reflection principle, which asserts that whenever a statement φ(a) in the first-order language of set theory is true in the set-theoretic universe V, then it is also true in a proper inner model W⊊V. A stronger principle, the ground-model reflection principle, asserts that any such φ(a) true in V is also true in some non-trivial ground model of the universe with respect to set forcing. These principles each express a form of width reflection in contrast to the usual height reflection of the Lévy–Montague reflection theorem. They are each equiconsistent with ZFC and indeed Π2-conservative over ZFC, being forceable by class forcing while preserving any desired rank-initial segment of the universe. Furthermore, the inner-model reflection principle is a consequence of the existence of sufficient large cardinals, and lightface formulations of the reflection principles follow from the maximality principle MP and from the inner-model hypothesis IMH. We also consider some questions concerning the expressibility of the principles.</dcterms:abstract> <dc:rights>Attribution 4.0 International</dc:rights> <dcterms:available rdf:datatype="">2021-01-29T14:11:14Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:title>Inner-Model Reflection Principles</dcterms:title> <dc:contributor>Fuchs, Gunter</dc:contributor> </rdf:Description> </rdf:RDF>

Downloads since Jan 29, 2021 (Information about access statistics)

Barton_2-1whhsc8h44peb6.pdf 106

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


My Account