KOPS - The Institutional Repository of the University of Konstanz

Classification and Clustering of arXiv Documents, Sections, and Abstracts, Comparing Encodings of Natural and Mathematical Language

Classification and Clustering of arXiv Documents, Sections, and Abstracts, Comparing Encodings of Natural and Mathematical Language

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

SCHARPF, Philipp, Moritz SCHUBOTZ, Abdou YOUSSEF, Felix HAMBORG, Norman MEUSCHKE, Bela GIPP, 2020. Classification and Clustering of arXiv Documents, Sections, and Abstracts, Comparing Encodings of Natural and Mathematical Language. JCDL '20. China (Virtual Event), Aug 1, 2020 - Aug 5, 2020. In: HUANG, Ruhua, ed. and others. Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 (JCDL '20). New York:ACM, pp. 137-146. ISBN 978-1-4503-7585-6. Available under: doi: 10.1145/3383583.3398529

@inproceedings{Scharpf2020-05-22T06:16:32ZClass-51925, title={Classification and Clustering of arXiv Documents, Sections, and Abstracts, Comparing Encodings of Natural and Mathematical Language}, year={2020}, doi={10.1145/3383583.3398529}, isbn={978-1-4503-7585-6}, address={New York}, publisher={ACM}, booktitle={Proceedings of the ACM/IEEE Joint Conference on Digital Libraries in 2020 (JCDL '20)}, pages={137--146}, editor={Huang, Ruhua}, author={Scharpf, Philipp and Schubotz, Moritz and Youssef, Abdou and Hamborg, Felix and Meuschke, Norman and Gipp, Bela} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/51925"> <dc:creator>Schubotz, Moritz</dc:creator> <dcterms:issued>2020-05-22T06:16:32Z</dcterms:issued> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Scharpf, Philipp</dc:creator> <dc:contributor>Gipp, Bela</dc:contributor> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Meuschke, Norman</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Youssef, Abdou</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51925"/> <dc:contributor>Scharpf, Philipp</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Hamborg, Felix</dc:contributor> <dcterms:title>Classification and Clustering of arXiv Documents, Sections, and Abstracts, Comparing Encodings of Natural and Mathematical Language</dcterms:title> <dc:creator>Meuschke, Norman</dc:creator> <dc:creator>Hamborg, Felix</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-25T14:29:09Z</dc:date> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-11-25T14:29:09Z</dcterms:available> <dcterms:abstract xml:lang="eng">In this paper, we show how selecting and combining encodings of natural and mathematical language affect classification and clustering of documents with mathematical content. We demonstrate this by using sets of documents, sections, and abstracts from the arXiv preprint server that are labeled by their subject class (mathematics, computer science, physics, etc.) to compare different encodings of text and formulae and evaluate the performance and runtimes of selected classification and clustering algorithms. Our encodings achieve classification accuracies up to 82.8% and cluster purities up to 69.4% (number of clusters equals number of classes), and 99.9% (unspecified number of clusters) respectively. We observe a relatively low correlation between text and math similarity, which indicates the independence of text and formulae and motivates treating them as separate features of a document. The classification and clustering can be employed, e.g., for document search and recommendation. Furthermore, we show that the computer outperforms a human expert when classifying documents. Finally, we evaluate and discuss multi-label classification and formula semantification.</dcterms:abstract> <dc:contributor>Schubotz, Moritz</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Youssef, Abdou</dc:creator> <dc:creator>Gipp, Bela</dc:creator> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account