Handling deviating control values in concentration-response curves
Handling deviating control values in concentration-response curves
Date
2020
Authors
Kappenberg, Franziska
Brecklinghaus, Tim
Albrecht, Wiebke
van der Wurp, Carola
Hengstler, Jan G.
Rahnenführer, Jörg
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
681002
Project
EUToxRisk21
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
Archives of Toxicology ; 94 (2020), 11. - pp. 3787-3798. - Springer. - ISSN 0370-8497. - eISSN 1432-0738
Abstract
In cell biology, pharmacology and toxicology dose-response and concentration-response curves are frequently fitted to data with statistical methods. Such fits are used to derive quantitative measures (e.g. EC[Formula: see text] values) describing the relationship between the concentration of a compound or the strength of an intervention applied to cells and its effect on viability or function of these cells. Often, a reference, called negative control (or solvent control), is used to normalize the data. The negative control data sometimes deviate from the values measured for low (ineffective) test compound concentrations. In such cases, normalization of the data with respect to control values leads to biased estimates of the parameters of the concentration-response curve. Low quality estimates of effective concentrations can be the consequence. In a literature study, we found that this problem occurs in a large percentage of toxicological publications. We propose different strategies to tackle the problem, including complete omission of the controls. Data from a controlled simulation study indicate the best-suited problem solution for different data structure scenarios. This was further exemplified by a real concentration-response study. We provide the following recommendations how to handle deviating controls: (1) The log-logistic 4pLL model is a good default option. (2) When there are at least two concentrations in the no-effect range, low variances of the replicate measurements, and deviating controls, control values should be omitted before fitting the model. (3) When data are missing in the no-effect range, the Brain-Cousens model sometimes leads to better results than the default model.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
Concentration-response curve, Dose-response curve, Viability assay, Deviating controls, 4pLL model, Simulation study
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
KAPPENBERG, Franziska, Tim BRECKLINGHAUS, Wiebke ALBRECHT, Jonathan BLUM, Carola VAN DER WURP, Marcel LEIST, Jan G. HENGSTLER, Jörg RAHNENFÜHRER, 2020. Handling deviating control values in concentration-response curves. In: Archives of Toxicology. Springer. 94(11), pp. 3787-3798. ISSN 0370-8497. eISSN 1432-0738. Available under: doi: 10.1007/s00204-020-02913-0BibTex
@article{Kappenberg2020Handl-51094, year={2020}, doi={10.1007/s00204-020-02913-0}, title={Handling deviating control values in concentration-response curves}, number={11}, volume={94}, issn={0370-8497}, journal={Archives of Toxicology}, pages={3787--3798}, author={Kappenberg, Franziska and Brecklinghaus, Tim and Albrecht, Wiebke and Blum, Jonathan and van der Wurp, Carola and Leist, Marcel and Hengstler, Jan G. and Rahnenführer, Jörg} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/51094"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:creator>Brecklinghaus, Tim</dc:creator> <dc:creator>Albrecht, Wiebke</dc:creator> <dc:creator>Hengstler, Jan G.</dc:creator> <dc:creator>Leist, Marcel</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Rahnenführer, Jörg</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51094/1/Kappenberg_2-xjlhniz3vmf90.pdf"/> <dcterms:issued>2020</dcterms:issued> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dc:contributor>Brecklinghaus, Tim</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:rights>Attribution 4.0 International</dc:rights> <dc:creator>Rahnenführer, Jörg</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-29T09:44:47Z</dcterms:available> <dc:contributor>Blum, Jonathan</dc:contributor> <dc:contributor>van der Wurp, Carola</dc:contributor> <dc:contributor>Leist, Marcel</dc:contributor> <dc:creator>Blum, Jonathan</dc:creator> <dc:contributor>Hengstler, Jan G.</dc:contributor> <dcterms:title>Handling deviating control values in concentration-response curves</dcterms:title> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:creator>Kappenberg, Franziska</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-29T09:44:47Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/51094"/> <dc:creator>van der Wurp, Carola</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/51094/1/Kappenberg_2-xjlhniz3vmf90.pdf"/> <dc:language>eng</dc:language> <dc:contributor>Kappenberg, Franziska</dc:contributor> <dc:contributor>Albrecht, Wiebke</dc:contributor> <dcterms:abstract xml:lang="eng">In cell biology, pharmacology and toxicology dose-response and concentration-response curves are frequently fitted to data with statistical methods. Such fits are used to derive quantitative measures (e.g. EC[Formula: see text] values) describing the relationship between the concentration of a compound or the strength of an intervention applied to cells and its effect on viability or function of these cells. Often, a reference, called negative control (or solvent control), is used to normalize the data. The negative control data sometimes deviate from the values measured for low (ineffective) test compound concentrations. In such cases, normalization of the data with respect to control values leads to biased estimates of the parameters of the concentration-response curve. Low quality estimates of effective concentrations can be the consequence. In a literature study, we found that this problem occurs in a large percentage of toxicological publications. We propose different strategies to tackle the problem, including complete omission of the controls. Data from a controlled simulation study indicate the best-suited problem solution for different data structure scenarios. This was further exemplified by a real concentration-response study. We provide the following recommendations how to handle deviating controls: (1) The log-logistic 4pLL model is a good default option. (2) When there are at least two concentrations in the no-effect range, low variances of the replicate measurements, and deviating controls, control values should be omitted before fitting the model. (3) When data are missing in the no-effect range, the Brain-Cousens model sometimes leads to better results than the default model.</dcterms:abstract> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes