Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können derzeit keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted currently.)

dg2pix : Pixel-Based Visual Analysis of Dynamic Graphs

Cite This

Files in this item

Checksum: MD5:721248f3a02d5aece3c839d15acbc7a4

CAKMAK, Eren, Dominik JÄCKLE, Tobias SCHRECK, Daniel A. KEIM, 2020. dg2pix : Pixel-Based Visual Analysis of Dynamic Graphs. IEEE Visualization in Data Science (VDS) (Virtual Conference). Salt Lake City, Utah, Oct 26, 2020. In: Proceedings of IEEE Visualization in Data Science (VDS). Piscataway, NJ:IEEE, pp. 32-41. ISBN 978-1-72819-284-0. Available under: doi: 10.1109/VDS51726.2020.00008

@inproceedings{Cakmak2020dg2pi-51036, title={dg2pix : Pixel-Based Visual Analysis of Dynamic Graphs}, year={2020}, doi={10.1109/VDS51726.2020.00008}, isbn={978-1-72819-284-0}, address={Piscataway, NJ}, publisher={IEEE}, booktitle={Proceedings of IEEE Visualization in Data Science (VDS)}, pages={32--41}, author={Cakmak, Eren and Jäckle, Dominik and Schreck, Tobias and Keim, Daniel A.} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <bibo:uri rdf:resource=""/> <dcterms:rights rdf:resource=""/> <dcterms:available rdf:datatype="">2020-09-25T09:06:17Z</dcterms:available> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:creator>Cakmak, Eren</dc:creator> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:isPartOf rdf:resource=""/> <dc:creator>Jäckle, Dominik</dc:creator> <dcterms:title>dg2pix : Pixel-Based Visual Analysis of Dynamic Graphs</dcterms:title> <dcterms:abstract xml:lang="eng">Presenting long sequences of dynamic graphs remains challenging due to the underlying large-scale and high-dimensional data. We propose dg2pix, a novel pixel-based visualization technique, to visually explore temporal and structural properties in long sequences of large-scale graphs. The approach consists of three main steps: (1) the multiscale modeling of the temporal dimension; (2) unsupervised graph embeddings to learn low-dimensional representations of the dynamic graph data; and (3) an interactive pixel-based visualization to simultaneously explore the evolving data at different temporal aggregation scales. dg2pix provides a scalable overview of a dynamic graph, supports the exploration of long sequences of high-dimensional graph data, and enables the identification and comparison of similar temporal states. We show the applicability of the technique to synthetic and real-world datasets, demonstrating that temporal patterns in dynamic graphs can be identified and interpreted over time. dg2pix contributes a suitable intermediate representation between node-link diagrams at the high detail end and matrix representations on the low detail end.</dcterms:abstract> <dc:language>eng</dc:language> <dc:contributor>Cakmak, Eren</dc:contributor> <dc:rights>terms-of-use</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Keim, Daniel A.</dc:contributor> <dspace:hasBitstream rdf:resource=""/> <dcterms:issued>2020</dcterms:issued> <dc:creator>Schreck, Tobias</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:date rdf:datatype="">2020-09-25T09:06:17Z</dc:date> <dc:contributor>Jäckle, Dominik</dc:contributor> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:hasPart rdf:resource=""/> </rdf:Description> </rdf:RDF>

Downloads since Sep 25, 2020 (Information about access statistics)

Cakmak_2-2cjsu6eu0tpp9.pdf 159

This item appears in the following Collection(s)

Search KOPS


My Account