KOPS - The Institutional Repository of the University of Konstanz

Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics : Application to Materials and Biological Systems

Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)

Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics : Application to Materials and Biological Systems

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

GKEKA, Paraskevi, Gabriel STOLTZ, Amir BARATI FARIMANI, Zineb BELKACEMI, Michele CERIOTTI, John D. CHODERA, Aaron R. DINNER, Andrew L. FERGUSON, Jean-Bernard MAILLET, Christine PETER, 2020. Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics : Application to Materials and Biological Systems. In: Journal of Chemical Theory and Computation (JCTC). American Chemical Society (ACS). 16(8), pp. 4757-4775. ISSN 1549-9618. eISSN 1549-9626. Available under: doi: 10.1021/acs.jctc.0c00355

@article{Gkeka2020-08-11Machi-50937, title={Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics : Application to Materials and Biological Systems}, year={2020}, doi={10.1021/acs.jctc.0c00355}, number={8}, volume={16}, issn={1549-9618}, journal={Journal of Chemical Theory and Computation (JCTC)}, pages={4757--4775}, author={Gkeka, Paraskevi and Stoltz, Gabriel and Barati Farimani, Amir and Belkacemi, Zineb and Ceriotti, Michele and Chodera, John D. and Dinner, Aaron R. and Ferguson, Andrew L. and Maillet, Jean-Bernard and Peter, Christine} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/50937"> <dcterms:issued>2020-08-11</dcterms:issued> <dc:contributor>Ceriotti, Michele</dc:contributor> <dc:contributor>Dinner, Aaron R.</dc:contributor> <dc:contributor>Barati Farimani, Amir</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-22T07:39:46Z</dc:date> <dc:creator>Belkacemi, Zineb</dc:creator> <dc:contributor>Gkeka, Paraskevi</dc:contributor> <dc:contributor>Belkacemi, Zineb</dc:contributor> <dc:contributor>Peter, Christine</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/29"/> <dc:creator>Stoltz, Gabriel</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Ferguson, Andrew L.</dc:creator> <dcterms:abstract xml:lang="eng">Machine learning encompasses tools and algorithms that are now becoming popular in almost all scientific and technological fields. This is true for molecular dynamics as well, where machine learning offers promises of extracting valuable information from the enormous amounts of data generated by simulation of complex systems. We provide here a review of our current understanding of goals, benefits, and limitations of machine learning techniques for computational studies on atomistic systems, focusing on the construction of empirical force fields from ab initio databases and the determination of reaction coordinates for free energy computation and enhanced sampling.</dcterms:abstract> <dc:contributor>Chodera, John D.</dc:contributor> <dc:creator>Barati Farimani, Amir</dc:creator> <dc:contributor>Maillet, Jean-Bernard</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50937"/> <dc:contributor>Stoltz, Gabriel</dc:contributor> <dc:creator>Maillet, Jean-Bernard</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Peter, Christine</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-22T07:39:46Z</dcterms:available> <dc:creator>Chodera, John D.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/29"/> <dc:creator>Dinner, Aaron R.</dc:creator> <dc:creator>Ceriotti, Michele</dc:creator> <dc:creator>Gkeka, Paraskevi</dc:creator> <dc:contributor>Ferguson, Andrew L.</dc:contributor> <dcterms:title>Machine Learning Force Fields and Coarse-Grained Variables in Molecular Dynamics : Application to Materials and Biological Systems</dcterms:title> <dc:language>eng</dc:language> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account