KOPS - The Institutional Repository of the University of Konstanz

Predicting Historical Phonetic Features using Deep Neural Networks : A Case Study of the Phonetic System of Proto-Indo-European

Predicting Historical Phonetic Features using Deep Neural Networks : A Case Study of the Phonetic System of Proto-Indo-European

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

HARTMANN, Frederik, 2019. Predicting Historical Phonetic Features using Deep Neural Networks : A Case Study of the Phonetic System of Proto-Indo-European. 1st International Workshop on Computational Approaches to Historical Language Change. Florence, Italy, Aug 2, 2019. In: TAHMASEBI, Nina, ed. and others. Proceedings of the 1st International Workshop on Computational Approaches to Historical Language Change. Stroudsburg, PA, USA:ACL, pp. 98-108. ISBN 978-1-950737-31-4. Available under: doi: 10.18653/v1/W19-4713

@inproceedings{Hartmann2019Predi-50853, title={Predicting Historical Phonetic Features using Deep Neural Networks : A Case Study of the Phonetic System of Proto-Indo-European}, year={2019}, doi={10.18653/v1/W19-4713}, isbn={978-1-950737-31-4}, address={Stroudsburg, PA, USA}, publisher={ACL}, booktitle={Proceedings of the 1st International Workshop on Computational Approaches to Historical Language Change}, pages={98--108}, editor={Tahmasebi, Nina}, author={Hartmann, Frederik} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/50853"> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/45"/> <dc:language>eng</dc:language> <dc:creator>Hartmann, Frederik</dc:creator> <dc:contributor>Hartmann, Frederik</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/45"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-16T09:16:55Z</dcterms:available> <dc:rights>terms-of-use</dc:rights> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:issued>2019</dcterms:issued> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50853"/> <dcterms:abstract xml:lang="eng">Traditional historical linguistics lacks the possibility to empirically assess its assumptions regarding the phonetic systems of past languages and language stages since most current methods rely on comparative tools to gain insights into phonetic features of sounds in proto- or ancestor languages. The paper at hand presents a computational method based on deep neural networks to predict phonetic features of historical sounds where the exact quality is unknown and to test the overall coherence of reconstructed historical phonetic features. The method utilizes the principles of coarticulation, local predictability and statistical phonological constraints to predict phonetic features by the features of their immediate phonetic environment. The validity of this method will be assessed using New High German phonetic data and its specific application to diachronic linguistics will be demonstrated in a case study of the phonetic system Proto-Indo-European.</dcterms:abstract> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-16T09:16:55Z</dc:date> <dcterms:title>Predicting Historical Phonetic Features using Deep Neural Networks : A Case Study of the Phonetic System of Proto-Indo-European</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account