Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)
Type of Publication: | Journal article |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-2-1cjwu9acn37bq2 |
Author: | Xue, Xiao; D'Anjou, Benjamin; Watson, Thomas F.; Ward, Daniel R.; Savage, Donald E.; Lagally, Max G.; Friesen, Mark; Coppersmith, Susan N.; Eriksson, Mark A.; Vandersypen, Lieven M. K. et al. |
Year of publication: | 2019 |
Published in: | Physical Review X ; 10 (2019), 2. - 021006. - American Physical Society (APS). - eISSN 2160-3308 |
ArXiv-ID: | arXiv:1911.08420 |
DOI (citable link): | https://dx.doi.org/10.1103/PhysRevX.10.021006 |
Summary: |
Quantum error correction is of crucial importance for fault-tolerant quantum computers. As an essential step toward the implementation of quantum error-correcting codes, quantum nondemolition measurements are needed to efficiently detect the state of a logical qubit without destroying it. Here we implement quantum nondemolition measurements in a Si/SiGe two-qubit system, with one qubit serving as the logical qubit and the other serving as the ancilla. Making use of a two-qubit controlled-rotation gate, the state of the logical qubit is mapped onto the ancilla, followed by a destructive readout of the ancilla. Repeating this procedure enhances the logical readout fidelity from 75.5±0.3% to 94.5±0.2% after 15 ancilla readouts. In addition, we compare the conventional thresholding method with an improved signal processing method called soft decoding that makes use of analog information in the readout signal to better estimate the state of the logical qubit. We demonstrate that soft decoding leads to a significant reduction in the required number of repetitions when the readout errors become limited by Gaussian noise, for instance, in the case of readouts with a low signal-to-noise ratio. These results pave the way for the implementation of quantum error correction with spin qubits in silicon.
|
Subject (DDC): | 530 Physics |
Link to License: | Attribution 4.0 International |
Refereed: | Unknown |
XUE, Xiao, Benjamin D'ANJOU, Thomas F. WATSON, Daniel R. WARD, Donald E. SAVAGE, Max G. LAGALLY, Mark FRIESEN, Susan N. COPPERSMITH, Mark A. ERIKSSON, Lieven M. K. VANDERSYPEN, 2019. Repetitive quantum non-demolition measurement and soft decoding of a silicon spin qubit. In: Physical Review X. American Physical Society (APS). 10(2), 021006. eISSN 2160-3308. Available under: doi: 10.1103/PhysRevX.10.021006
@article{Xue2019-11-19T17:37:44ZRepet-50727, title={Repetitive quantum non-demolition measurement and soft decoding of a silicon spin qubit}, year={2019}, doi={10.1103/PhysRevX.10.021006}, number={2}, volume={10}, journal={Physical Review X}, author={Xue, Xiao and D'Anjou, Benjamin and Watson, Thomas F. and Ward, Daniel R. and Savage, Donald E. and Lagally, Max G. and Friesen, Mark and Coppersmith, Susan N. and Eriksson, Mark A. and Vandersypen, Lieven M. K.}, note={Article Number: 021006} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/50727"> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>D'Anjou, Benjamin</dc:creator> <dc:contributor>Lagally, Max G.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dcterms:abstract xml:lang="eng">Quantum error correction is of crucial importance for fault-tolerant quantum computers. As an essential step toward the implementation of quantum error-correcting codes, quantum nondemolition measurements are needed to efficiently detect the state of a logical qubit without destroying it. Here we implement quantum nondemolition measurements in a Si/SiGe two-qubit system, with one qubit serving as the logical qubit and the other serving as the ancilla. Making use of a two-qubit controlled-rotation gate, the state of the logical qubit is mapped onto the ancilla, followed by a destructive readout of the ancilla. Repeating this procedure enhances the logical readout fidelity from 75.5±0.3% to 94.5±0.2% after 15 ancilla readouts. In addition, we compare the conventional thresholding method with an improved signal processing method called soft decoding that makes use of analog information in the readout signal to better estimate the state of the logical qubit. We demonstrate that soft decoding leads to a significant reduction in the required number of repetitions when the readout errors become limited by Gaussian noise, for instance, in the case of readouts with a low signal-to-noise ratio. These results pave the way for the implementation of quantum error correction with spin qubits in silicon.</dcterms:abstract> <dc:creator>Ward, Daniel R.</dc:creator> <dc:creator>Savage, Donald E.</dc:creator> <dc:contributor>Coppersmith, Susan N.</dc:contributor> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dc:contributor>Watson, Thomas F.</dc:contributor> <dcterms:title>Repetitive quantum non-demolition measurement and soft decoding of a silicon spin qubit</dcterms:title> <dc:creator>Eriksson, Mark A.</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50727/1/Xue_2-1cjwu9acn37bq2.pdf"/> <dc:contributor>D'Anjou, Benjamin</dc:contributor> <dcterms:issued>2019-11-19T17:37:44Z</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-08T12:33:33Z</dcterms:available> <dc:creator>Lagally, Max G.</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dc:contributor>Vandersypen, Lieven M. K.</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-08T12:33:33Z</dc:date> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50727/1/Xue_2-1cjwu9acn37bq2.pdf"/> <dc:contributor>Friesen, Mark</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50727"/> <dc:language>eng</dc:language> <dc:contributor>Eriksson, Mark A.</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dc:contributor>Savage, Donald E.</dc:contributor> <dc:creator>Coppersmith, Susan N.</dc:creator> <dc:creator>Watson, Thomas F.</dc:creator> <dc:creator>Friesen, Mark</dc:creator> <dc:creator>Xue, Xiao</dc:creator> <dc:contributor>Ward, Daniel R.</dc:contributor> <dc:contributor>Xue, Xiao</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Vandersypen, Lieven M. K.</dc:creator> </rdf:Description> </rdf:RDF>
Xue_2-1cjwu9acn37bq2.pdf | 7 |