Exploring the Representativity of Art Paintings

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

DENG, Yingying, Fan TANG, Weiming DONG, Chongyang MA, Feiyue HUANG, Oliver DEUSSEN, Changsheng XU, 2020. Exploring the Representativity of Art Paintings. In: IEEE Transactions on Multimedia. IEEE. ISSN 1520-9210. eISSN 1941-0077. Available under: doi: 10.1109/TMM.2020.3016887

@article{Deng2020Explo-50622, title={Exploring the Representativity of Art Paintings}, year={2020}, doi={10.1109/TMM.2020.3016887}, issn={1520-9210}, journal={IEEE Transactions on Multimedia}, author={Deng, Yingying and Tang, Fan and Dong, Weiming and Ma, Chongyang and Huang, Feiyue and Deussen, Oliver and Xu, Changsheng} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/50622"> <dcterms:title>Exploring the Representativity of Art Paintings</dcterms:title> <dc:contributor>Tang, Fan</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Huang, Feiyue</dc:contributor> <dc:creator>Xu, Changsheng</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:abstract xml:lang="eng">Art painting evaluation is sophisticated for a novice with no or limited knowledge on art criticism and history. In this study, we propose the concept of representativity to evaluate paintings instead of using professional concepts, such as genre, media, and style, which may be confusing to non-professionals. We define the concept of representativity to evaluate quantitatively the extent to which a painting can represent the characteristics of an artist's creations. We begin by proposing a novel deep representation of art paintings, which is enhanced by style information through a weighted pooling feature fusion module. In contrast to existing feature extraction approaches, the proposed framework embeds painting styles and authorship information and learns specific artwork characteristics in a single framework. Subsequently, we propose a graph-based learning method for representativity learning, which considers intra-category and extra-category information. In view of the significance of historical factors in the art domain, we introduce the creation time of a painting into the learning process. User studies demonstrate our approach helps the public effectively access the creation characteristics of artists through sorting paintings by representativity from highest to lowest.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dc:creator>Deng, Yingying</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-01T11:05:32Z</dc:date> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50622"/> <dc:creator>Ma, Chongyang</dc:creator> <dc:contributor>Deussen, Oliver</dc:contributor> <dc:contributor>Deng, Yingying</dc:contributor> <dc:creator>Huang, Feiyue</dc:creator> <dcterms:issued>2020</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-09-01T11:05:32Z</dcterms:available> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Dong, Weiming</dc:contributor> <dc:creator>Deussen, Oliver</dc:creator> <dc:creator>Dong, Weiming</dc:creator> <dc:contributor>Xu, Changsheng</dc:contributor> <dc:creator>Tang, Fan</dc:creator> <dc:contributor>Ma, Chongyang</dc:contributor> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account