KOPS - The Institutional Repository of the University of Konstanz

Properties of a nonlinear bath : experiments, theory, and a stochastic Prandtl-Tomlinson model

Properties of a nonlinear bath : experiments, theory, and a stochastic Prandtl-Tomlinson model

Cite This

Files in this item

Checksum: MD5:88dd9338a7f0e0716c604a2a1067f6cc

MÜLLER, Boris, Johannes BERNER, Clemens BECHINGER, Matthias KRÜGER, 2020. Properties of a nonlinear bath : experiments, theory, and a stochastic Prandtl-Tomlinson model. In: New Journal of Physics. Institute of Physics Publishing (IOP). 22(2), 023014. eISSN 1367-2630. Available under: doi: 10.1088/1367-2630/ab6a39

@article{Muller2020-02-05Prope-50212, title={Properties of a nonlinear bath : experiments, theory, and a stochastic Prandtl-Tomlinson model}, year={2020}, doi={10.1088/1367-2630/ab6a39}, number={2}, volume={22}, journal={New Journal of Physics}, author={Müller, Boris and Berner, Johannes and Bechinger, Clemens and Krüger, Matthias}, note={Article Number: 023014} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/50212"> <dc:creator>Berner, Johannes</dc:creator> <dc:language>eng</dc:language> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:issued>2020-02-05</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-13T06:39:33Z</dcterms:available> <dc:contributor>Bechinger, Clemens</dc:contributor> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50212/1/Mueller_2-1n4fzckq8vyqn6.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Berner, Johannes</dc:contributor> <dc:rights>Attribution 4.0 International</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/50212/1/Mueller_2-1n4fzckq8vyqn6.pdf"/> <dc:contributor>Krüger, Matthias</dc:contributor> <dcterms:title>Properties of a nonlinear bath : experiments, theory, and a stochastic Prandtl-Tomlinson model</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/50212"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dc:contributor>Müller, Boris</dc:contributor> <dc:creator>Krüger, Matthias</dc:creator> <dc:creator>Müller, Boris</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-07-13T06:39:33Z</dc:date> <dc:creator>Bechinger, Clemens</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:abstract xml:lang="eng">A colloidal particle is a prominent example of a stochastic system, and, if suspended in a simple viscous liquid, very closely resembles the case of an ideal random walker. A variety of new phenomena have been observed when such colloid is suspended in a viscoelastic fluid instead, for example pronounced nonlinear responses when the viscoelastic bath is driven out of equilibrium. Here, using a micron-sized particle in a micellar solution, we investigate in detail, how these nonlinear bath properties leave their fingerprints already in equilibrium measurements, for the cases where the particle is unconfined or trapped in a harmonic potential. We find that the coefficients in an effective linear (generalized) Langevin equation show intriguing inter-dependencies, which can be shown to arise only in nonlinear baths: for example, the friction memory can depend on the external potential that acts only on the colloidal particle (as recently noted in simulations of molecular tracers in water in (2017 Phys. Rev. X 7 041065)), it can depend on the mass of the colloid, or, in an overdamped setting, on its bare diffusivity. These inter-dependencies, caused by so-called fluctuation renormalizations, are seen in an exact small time expansion of the friction memory based on microscopic starting points. Using linear response theory, they can be interpreted in terms of microrheological modes of force-controlled or velocity-controlled driving. The mentioned nonlinear markers are observed in our experiments, which are astonishingly well reproduced by a stochastic Prandtl–Tomlinson model mimicking the nonlinear viscoelastic bath. The pronounced nonlinearities seen in our experiments together with the good understanding in a simple theoretical model make this system a promising candidate for exploration of colloidal motion in nonlinear stochastic environments.</dcterms:abstract> </rdf:Description> </rdf:RDF>

Downloads since Jul 13, 2020 (Information about access statistics)

Mueller_2-1n4fzckq8vyqn6.pdf 86

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


My Account