Type of Publication: | Journal article |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-2-1pwj74q9dj8k96 |
Author: | Russ, Maximilian; Péterfalvi, Csaba G.; Burkard, Guido |
Year of publication: | 2020 |
Published in: | Journal of Physics: Condensed Matter ; 32 (2020), 16. - 165301. - Institute of Physics Publishing (IOP). - ISSN 0953-8984. - eISSN 1361-648X |
Pubmed ID: | 31829981 |
DOI (citable link): | https://dx.doi.org/10.1088/1361-648X/ab613f |
Summary: |
We theoretically study a silicon triple quantum dot (TQD) system coupled to a superconducting microwave resonator. The response signal of an injected probe signal can be used to extract information about the level structure by measuring the transmission and phase shift of the output field. This information can further be used to gain knowledge about the valley splittings and valley phases in the individual dots. Since relevant valley states are typically split by several , a finite temperature or an applied external bias voltage is required to populate energetically excited states. The theoretical methods in this paper include a capacitor model to fit experimental charging energies, an extended Hubbard model to describe the tunneling dynamics, a rate equation model to find the occupation probabilities, and an input–output model to determine the response signal of the resonator.
|
Subject (DDC): | 530 Physics |
Link to License: | Attribution 3.0 Unported |
Bibliography of Konstanz: | Yes |
Refereed: | Yes |
RUSS, Maximilian, Csaba G. PÉTERFALVI, Guido BURKARD, 2020. Theory of valley-resolved spectroscopy of a Si triple quantum dot coupled to a microwave resonator. In: Journal of Physics: Condensed Matter. Institute of Physics Publishing (IOP). 32(16), 165301. ISSN 0953-8984. eISSN 1361-648X. Available under: doi: 10.1088/1361-648X/ab613f
@article{Russ2020Theor-49843, title={Theory of valley-resolved spectroscopy of a Si triple quantum dot coupled to a microwave resonator}, year={2020}, doi={10.1088/1361-648X/ab613f}, number={16}, volume={32}, issn={0953-8984}, journal={Journal of Physics: Condensed Matter}, author={Russ, Maximilian and Péterfalvi, Csaba G. and Burkard, Guido}, note={Article Number: 165301} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/49843"> <dc:language>eng</dc:language> <dc:contributor>Russ, Maximilian</dc:contributor> <dc:contributor>Burkard, Guido</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49843/1/Russ_2-1pwj74q9dj8k96.pdf"/> <dc:creator>Péterfalvi, Csaba G.</dc:creator> <dc:creator>Burkard, Guido</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-16T07:35:17Z</dc:date> <dc:contributor>Péterfalvi, Csaba G.</dc:contributor> <dcterms:abstract xml:lang="eng">We theoretically study a silicon triple quantum dot (TQD) system coupled to a superconducting microwave resonator. The response signal of an injected probe signal can be used to extract information about the level structure by measuring the transmission and phase shift of the output field. This information can further be used to gain knowledge about the valley splittings and valley phases in the individual dots. Since relevant valley states are typically split by several , a finite temperature or an applied external bias voltage is required to populate energetically excited states. The theoretical methods in this paper include a capacitor model to fit experimental charging energies, an extended Hubbard model to describe the tunneling dynamics, a rate equation model to find the occupation probabilities, and an input–output model to determine the response signal of the resonator.</dcterms:abstract> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/49843/1/Russ_2-1pwj74q9dj8k96.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:rights>Attribution 3.0 Unported</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Russ, Maximilian</dc:creator> <dcterms:issued>2020</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-06-16T07:35:17Z</dcterms:available> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/3.0/"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/41"/> <dcterms:title>Theory of valley-resolved spectroscopy of a Si triple quantum dot coupled to a microwave resonator</dcterms:title> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/49843"/> </rdf:Description> </rdf:RDF>
Russ_2-1pwj74q9dj8k96.pdf | 201 |