KOPS - The Institutional Repository of the University of Konstanz

Blind Quality Assessment of Iris Images Acquired in Visible Light for Biometric Recognition

Blind Quality Assessment of Iris Images Acquired in Visible Light for Biometric Recognition

Cite This

Files in this item

Checksum: MD5:7a59ee597b2e6c63d6ed9f51951a5d19

JENADELEH, Mohsen, Marius PEDERSEN, Dietmar SAUPE, 2020. Blind Quality Assessment of Iris Images Acquired in Visible Light for Biometric Recognition. In: Sensors. MDPI. 20(5), 1308. eISSN 1424-8220. Available under: doi: 10.3390/s20051308

@article{Jenadeleh2020-03Blind-48919, title={Blind Quality Assessment of Iris Images Acquired in Visible Light for Biometric Recognition}, year={2020}, doi={10.3390/s20051308}, number={5}, volume={20}, journal={Sensors}, author={Jenadeleh, Mohsen and Pedersen, Marius and Saupe, Dietmar}, note={Article Number: 1308} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/48919"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-04T07:51:40Z</dcterms:available> <dcterms:issued>2020-03</dcterms:issued> <dc:contributor>Pedersen, Marius</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/> <dcterms:abstract xml:lang="eng">Image quality is a key issue affecting the performance of biometric systems. Ensuring the quality of iris images acquired in unconstrained imaging conditions in visible light poses many challenges to iris recognition systems. Poor-quality iris images increase the false rejection rate and decrease the performance of the systems by quality filtering. Methods that can accurately predict iris image quality can improve the efficiency of quality-control protocols in iris recognition systems. We propose a fast blind/no-reference metric for predicting iris image quality. The proposed metric is based on statistical features of the sign and the magnitude of local image intensities. The experiments, conducted with a reference iris recognition system and three datasets of iris images acquired in visible light, showed that the quality of iris images strongly affects the recognition performance and is highly correlated with the iris matching scores. Rejecting poor-quality iris images improved the performance of the iris recognition system. In addition, we analyzed the effect of iris image quality on the accuracy of the iris segmentation module in the iris recognition system.</dcterms:abstract> <dc:rights>Attribution 4.0 International</dc:rights> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48919/1/Jenadeleh_2-lyzex08wpkja6.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:title>Blind Quality Assessment of Iris Images Acquired in Visible Light for Biometric Recognition</dcterms:title> <dc:creator>Jenadeleh, Mohsen</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-03-04T07:51:40Z</dc:date> <dc:language>eng</dc:language> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48919"/> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:creator>Pedersen, Marius</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/48919/1/Jenadeleh_2-lyzex08wpkja6.pdf"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:creator>Saupe, Dietmar</dc:creator> <dc:contributor>Jenadeleh, Mohsen</dc:contributor> </rdf:Description> </rdf:RDF>

Downloads since Mar 4, 2020 (Information about access statistics)

Jenadeleh_2-lyzex08wpkja6.pdf 180

This item appears in the following Collection(s)

Attribution 4.0 International Except where otherwise noted, this item's license is described as Attribution 4.0 International

Search KOPS


Browse

My Account