Asymptotic stability in a second-order symmetric hyperbolic system modeling the relativistic dynamics of viscous heat-conductive fluids with diffusion

No Thumbnail Available
Files
There are no files associated with this item.
Date
2020
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
oops
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Journal article
Publication status
Published
Published in
Journal of Differential Equations ; 268 (2020), 2. - pp. 825-851. - Elsevier. - ISSN 0022-0396. - eISSN 1090-2732
Abstract
This paper establishes nonlinear asymptotic stability of homogeneous reference states in dissipative relativistic fluid dynamics. The result is a counterpart for general non-barotropic fluids of one obtained by the author in a previous paper on barotropic fluids. Differently from that of this earlier finding, the proof here crucially relies on analyzing the corresponding linearized problem in Fourier space, with different scalings for small and large wave numbers.
Summary in another language
Subject (DDC)
510 Mathematics
Keywords
fluid dynamics, partial differential equations, symmetric hyperbolictiy, quasi-linearity, long-time existence, asymptotic stability
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690SROCZINSKI, Matthias, 2020. Asymptotic stability in a second-order symmetric hyperbolic system modeling the relativistic dynamics of viscous heat-conductive fluids with diffusion. In: Journal of Differential Equations. Elsevier. 268(2), pp. 825-851. ISSN 0022-0396. eISSN 1090-2732. Available under: doi: 10.1016/j.jde.2019.08.028
BibTex
@article{Sroczinski2020-01Asymp-48164,
  year={2020},
  doi={10.1016/j.jde.2019.08.028},
  title={Asymptotic stability in a second-order symmetric hyperbolic system modeling the relativistic dynamics of viscous heat-conductive fluids with diffusion},
  number={2},
  volume={268},
  issn={0022-0396},
  journal={Journal of Differential Equations},
  pages={825--851},
  author={Sroczinski, Matthias}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/48164">
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-08T08:40:37Z</dcterms:available>
    <dcterms:title>Asymptotic stability in a second-order symmetric hyperbolic system modeling the relativistic dynamics of viscous heat-conductive fluids with diffusion</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2020-01-08T08:40:37Z</dc:date>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/48164"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/39"/>
    <dc:creator>Sroczinski, Matthias</dc:creator>
    <dc:contributor>Sroczinski, Matthias</dc:contributor>
    <dcterms:abstract xml:lang="eng">This paper establishes nonlinear asymptotic stability of homogeneous reference states in dissipative relativistic fluid dynamics. The result is a counterpart for general non-barotropic fluids of one obtained by the author in a previous paper on barotropic fluids. Differently from that of this earlier finding, the proof here crucially relies on analyzing the corresponding linearized problem in Fourier space, with different scalings for small and large wave numbers.</dcterms:abstract>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:issued>2020-01</dcterms:issued>
    <dc:language>eng</dc:language>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes