Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können derzeit keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted currently.)
Type of Publication: | Journal article |
Publication status: | Published |
URI (citable link): | http://nbn-resolving.de/urn:nbn:de:bsz:352-2-qn2sncvrlmh14 |
Author: | Beran, Jan; Ghosh, Sucharita |
Year of publication: | 2020 |
Published in: | Journal of Time Series Analysis ; 41 (2020), 2. - pp. 210-228. - Wiley. - ISSN 0143-9782. - eISSN 1467-9892 |
DOI (citable link): | https://dx.doi.org/10.1111/jtsa.12500 |
Summary: |
A class of circular processes based on Gaussian subordination is introduced. This allows for flexible modelling of directional time series with long‐range dependence. Based on limit theorems for subordinated processes and consistent estimation of nuisance parameters, asymptotic confidence intervals for the mean direction are derived. Extensions to cases where the direction depends on explanatory variables are also considered. Simulations and a data example illustrate the proposed method.
|
Subject (DDC): | 510 Mathematics |
Link to License: | Attribution-NonCommercial-NoDerivatives 4.0 International |
Bibliography of Konstanz: | Yes |
Refereed: | Yes |
BERAN, Jan, Sucharita GHOSH, 2020. Estimating the Mean Direction of Strongly Dependent Circular Time Series. In: Journal of Time Series Analysis. Wiley. 41(2), pp. 210-228. ISSN 0143-9782. eISSN 1467-9892. Available under: doi: 10.1111/jtsa.12500
@article{Beran2020-03Estim-46788, title={Estimating the Mean Direction of Strongly Dependent Circular Time Series}, year={2020}, doi={10.1111/jtsa.12500}, number={2}, volume={41}, issn={0143-9782}, journal={Journal of Time Series Analysis}, pages={210--228}, author={Beran, Jan and Ghosh, Sucharita} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/46788"> <dcterms:abstract xml:lang="eng">A class of circular processes based on Gaussian subordination is introduced. This allows for flexible modelling of directional time series with long‐range dependence. Based on limit theorems for subordinated processes and consistent estimation of nuisance parameters, asymptotic confidence intervals for the mean direction are derived. Extensions to cases where the direction depends on explanatory variables are also considered. Simulations and a data example illustrate the proposed method.</dcterms:abstract> <dc:contributor>Beran, Jan</dc:contributor> <dc:creator>Beran, Jan</dc:creator> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46788"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nc-nd/4.0/"/> <dcterms:title>Estimating the Mean Direction of Strongly Dependent Circular Time Series</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46788/1/Beran_2-qn2sncvrlmh14.pdf"/> <dc:creator>Ghosh, Sucharita</dc:creator> <dc:contributor>Ghosh, Sucharita</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-04T12:14:20Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-09-04T12:14:20Z</dcterms:available> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46788/1/Beran_2-qn2sncvrlmh14.pdf"/> <dc:rights>Attribution-NonCommercial-NoDerivatives 4.0 International</dc:rights> <dcterms:issued>2020-03</dcterms:issued> </rdf:Description> </rdf:RDF>
Beran_2-qn2sncvrlmh14.pdf | 144 |