Predicting toxicity of chemicals : software beats animal testing
Predicting toxicity of chemicals : software beats animal testing
Date
2019
Authors
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
681002
Project
EUToxRisk21
Open Access publication
Collections
Title in another language
Publication type
Journal article
Publication status
Published
Published in
EFSA Journal ; 17 (2019), S1. - e170710. - eISSN 1831-4732
Abstract
We created earlier a large machine‐readable database of 10,000 chemicals and 800,000 associated studies by natural language processing of the public parts of Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) registrations until December 2014. This database was used to assess the reproducibility of the six most frequently used Organisation for Economic Co‐operation and Development (OECD) guideline tests. These tests consume 55% of all animals in safety testing in Europe, i.e. about 600,000 animals. With 350–750 chemicals with multiple results per test, reproducibility (balanced accuracy) was 81% and 69% of toxic substances were found again in a repeat experiment (sensitivity 69%). Inspired by the increasingly used read‐across approach, we created a new type of QSAR, which is based on similarity of chemicals and not on chemical descriptors. A landscape of the chemical universe using 10 million structures was calculated, when based on Tanimoto indices similar chemicals are close and dissimilar chemicals far from each other. This allows placing any chemical of interest into the map and evaluating the information available for surrounding chemicals. In a data fusion approach, in which 74 different properties were taken into consideration, machine learning (random forest) allowed a fivefold cross‐validation for 190,000 (non‐) hazard labels of chemicals for which nine hazards were predicted. The balanced accuracy of this approach was 87% with a sensitivity of 89%. Each prediction comes with a certainty measure based on the homogeneity of data and distance of neighbours. Ongoing developments and future opportunities are discussed.
Summary in another language
Subject (DDC)
570 Biosciences, Biology
Keywords
alternatives to animal testing, computational toxicology, read‐across, risk assessment
Conference
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
HARTUNG, Thomas, 2019. Predicting toxicity of chemicals : software beats animal testing. In: EFSA Journal. 17(S1), e170710. eISSN 1831-4732. Available under: doi: 10.2903/j.efsa.2019.e170710BibTex
@article{Hartung2019-07Predi-46395, year={2019}, doi={10.2903/j.efsa.2019.e170710}, title={Predicting toxicity of chemicals : software beats animal testing}, number={S1}, volume={17}, journal={EFSA Journal}, author={Hartung, Thomas}, note={Article Number: e170710} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/46395"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/46395"/> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46395/3/Hartung_2-1hty12egi8x507.pdf"/> <dc:contributor>Hartung, Thomas</dc:contributor> <dcterms:abstract xml:lang="eng">We created earlier a large machine‐readable database of 10,000 chemicals and 800,000 associated studies by natural language processing of the public parts of Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) registrations until December 2014. This database was used to assess the reproducibility of the six most frequently used Organisation for Economic Co‐operation and Development (OECD) guideline tests. These tests consume 55% of all animals in safety testing in Europe, i.e. about 600,000 animals. With 350–750 chemicals with multiple results per test, reproducibility (balanced accuracy) was 81% and 69% of toxic substances were found again in a repeat experiment (sensitivity 69%). Inspired by the increasingly used read‐across approach, we created a new type of QSAR, which is based on similarity of chemicals and not on chemical descriptors. A landscape of the chemical universe using 10 million structures was calculated, when based on Tanimoto indices similar chemicals are close and dissimilar chemicals far from each other. This allows placing any chemical of interest into the map and evaluating the information available for surrounding chemicals. In a data fusion approach, in which 74 different properties were taken into consideration, machine learning (random forest) allowed a fivefold cross‐validation for 190,000 (non‐) hazard labels of chemicals for which nine hazards were predicted. The balanced accuracy of this approach was 87% with a sensitivity of 89%. Each prediction comes with a certainty measure based on the homogeneity of data and distance of neighbours. Ongoing developments and future opportunities are discussed.</dcterms:abstract> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-16T12:19:52Z</dcterms:available> <dc:rights>Attribution-NoDerivatives 4.0 International</dc:rights> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:language>eng</dc:language> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/46395/3/Hartung_2-1hty12egi8x507.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/28"/> <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by-nd/4.0/"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-07-16T12:19:52Z</dc:date> <dc:creator>Hartung, Thomas</dc:creator> <dcterms:title>Predicting toxicity of chemicals : software beats animal testing</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2019-07</dcterms:issued> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed
Yes