KOPS - The Institutional Repository of the University of Konstanz

Distances, Neighborhoods, or Dimensions? : Projection Literacy for the Analysis of Multivariate Data

Distances, Neighborhoods, or Dimensions? : Projection Literacy for the Analysis of Multivariate Data

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

STREEB, Dirk, Rebecca KEHLBECK, Dominik JÄCKLE, Mennatallah EL-ASSADY, 2018. Distances, Neighborhoods, or Dimensions? : Projection Literacy for the Analysis of Multivariate Data. VisxAI : Workshop on Visualization for AI Explainability. Berlin, Oct 22, 2018. In: Proceedings of VisxAI : Workshop on Visualization for AI Explainability

@inproceedings{Streeb2018Dista-45031, title={Distances, Neighborhoods, or Dimensions? : Projection Literacy for the Analysis of Multivariate Data}, url={https://visxprojections.dbvis.de/client/index.html}, year={2018}, booktitle={Proceedings of VisxAI : Workshop on Visualization for AI Explainability}, author={Streeb, Dirk and Kehlbeck, Rebecca and Jäckle, Dominik and El-Assady, Mennatallah} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/45031"> <dc:creator>Kehlbeck, Rebecca</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dcterms:title>Distances, Neighborhoods, or Dimensions? : Projection Literacy for the Analysis of Multivariate Data</dcterms:title> <dc:contributor>Kehlbeck, Rebecca</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:issued>2018</dcterms:issued> <dc:creator>El-Assady, Mennatallah</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T10:51:49Z</dc:date> <dc:creator>Streeb, Dirk</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-02-14T10:51:49Z</dcterms:available> <dc:creator>Jäckle, Dominik</dc:creator> <dc:contributor>Jäckle, Dominik</dc:contributor> <dc:contributor>El-Assady, Mennatallah</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Streeb, Dirk</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/45031"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:abstract xml:lang="eng">Projections are some of the most common methods for presenting high-dimensional datasets on a 2D display. While these techniques provide overviews that highlight relations between observations, they are unavoidably subject to change depending on chosen configurations. Hence, the same projection technique can depict multiple compositions of the same dataset, depending on its parameter setting. Furthermore, projection techniques differ in their underlying assumptions and computation mechanisms, favoring the preservation of either distances, neighborhoods, or dimensions. This article aims to shed light on the similarities and differences of a multitude of projection techniques, the influence of features and parameters on data-representations, and give a data-driven intuition on the relation of projections. We postulate that, depending on the task and data, a different choice of projection technique, or a combination of such, might lead to a more effective view.</dcterms:abstract> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account