Automated identification of media bias in news articles : an interdisciplinary literature review

Lade...
Vorschaubild
Dateien
Hamborg_2-dovzzlr93tql8.pdf
Hamborg_2-dovzzlr93tql8.pdfGröße: 771.74 KBDownloads: 597
Datum
2019
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Open Access Hybrid
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Publikationstyp
Zeitschriftenartikel
Publikationsstatus
Published
Erschienen in
International Journal on Digital Libraries. 2019, 20(4), pp. 391-415. ISSN 1432-5012. eISSN 1432-1300. Available under: doi: 10.1007/s00799-018-0261-y
Zusammenfassung

Media bias, i.e., slanted news coverage, can strongly impact the public perception of the reported topics. In the social sciences, research over the past decades has developed comprehensive models to describe media bias and effective, yet often manual and thus cumbersome, methods for analysis. In contrast, in computer science fast, automated, and scalable methods are available, but few approaches systematically analyze media bias. The models used to analyze media bias in computer science tend to be simpler compared to models established in the social sciences, and do not necessarily address the most pressing substantial questions, despite technically superior approaches. Computer science research on media bias thus stands to profit from a closer integration of models for the study of media bias developed in the social sciences with automated methods from computer science. This article first establishes a shared conceptual understanding by mapping the state of the art from the social sciences to a framework, which can be targeted by approaches from computer science. Next, we investigate different forms of media bias and review how each form is analyzed in the social sciences. For each form, we then discuss methods from computer science suitable to (semi-)automate the corresponding analysis. Our review suggests that suitable, automated methods from computer science, primarily in the realm of natural language processing, are already available for each of the discussed forms of media bias, opening multiple directions for promising further research in computer science in this area.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
320 Politik
Schlagwörter
News bias, News slant, Natural language processing (NLP)
Konferenz
Rezension
undefined / . - undefined, undefined
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Datensätze
Zitieren
ISO 690HAMBORG, Felix, Karsten DONNAY, Bela GIPP, 2019. Automated identification of media bias in news articles : an interdisciplinary literature review. In: International Journal on Digital Libraries. 2019, 20(4), pp. 391-415. ISSN 1432-5012. eISSN 1432-1300. Available under: doi: 10.1007/s00799-018-0261-y
BibTex
@article{Hamborg2019-12Autom-44511,
  year={2019},
  doi={10.1007/s00799-018-0261-y},
  title={Automated identification of media bias in news articles : an interdisciplinary literature review},
  number={4},
  volume={20},
  issn={1432-5012},
  journal={International Journal on Digital Libraries},
  pages={391--415},
  author={Hamborg, Felix and Donnay, Karsten and Gipp, Bela}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/44511">
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <dcterms:issued>2019-12</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44511/1/Hamborg_2-dovzzlr93tql8.pdf"/>
    <dc:language>eng</dc:language>
    <dcterms:title>Automated identification of media bias in news articles : an interdisciplinary literature review</dcterms:title>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43613"/>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/44511"/>
    <dc:contributor>Hamborg, Felix</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-10T12:55:03Z</dcterms:available>
    <dc:rights>Attribution 4.0 International</dc:rights>
    <dc:creator>Hamborg, Felix</dc:creator>
    <dc:creator>Gipp, Bela</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dc:creator>Donnay, Karsten</dc:creator>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42"/>
    <dcterms:rights rdf:resource="http://creativecommons.org/licenses/by/4.0/"/>
    <dcterms:abstract xml:lang="eng">Media bias, i.e., slanted news coverage, can strongly impact the public perception of the reported topics. In the social sciences, research over the past decades has developed comprehensive models to describe media bias and effective, yet often manual and thus cumbersome, methods for analysis. In contrast, in computer science fast, automated, and scalable methods are available, but few approaches systematically analyze media bias. The models used to analyze media bias in computer science tend to be simpler compared to models established in the social sciences, and do not necessarily address the most pressing substantial questions, despite technically superior approaches. Computer science research on media bias thus stands to profit from a closer integration of models for the study of media bias developed in the social sciences with automated methods from computer science. This article first establishes a shared conceptual understanding by mapping the state of the art from the social sciences to a framework, which can be targeted by approaches from computer science. Next, we investigate different forms of media bias and review how each form is analyzed in the social sciences. For each form, we then discuss methods from computer science suitable to (semi-)automate the corresponding analysis. Our review suggests that suitable, automated methods from computer science, primarily in the realm of natural language processing, are already available for each of the discussed forms of media bias, opening multiple directions for promising further research in computer science in this area.</dcterms:abstract>
    <dc:contributor>Donnay, Karsten</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2019-01-10T12:55:03Z</dc:date>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/44511/1/Hamborg_2-dovzzlr93tql8.pdf"/>
    <dc:contributor>Gipp, Bela</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Unbekannt
Diese Publikation teilen