KOPS - The Institutional Repository of the University of Konstanz

Exploring geo-tagged photos to assess spatial patterns of visitors in protected areas : the case of park of Etna (Italy)

Exploring geo-tagged photos to assess spatial patterns of visitors in protected areas : the case of park of Etna (Italy)

Cite This

Files in this item

Checksum: MD5:88c01ff2391744d601e4847f8ee43dc0

SIGNORELLO, Giovanni, Giovanni Maria FARINELLA, Lorenzo DI SILVESTRO, Alessandro TORRISI, Giovanni GALLO, 2018. Exploring geo-tagged photos to assess spatial patterns of visitors in protected areas : the case of park of Etna (Italy). VGI Geovisual Analytics Workshop, colocated with BDVA 2018. Konstanz, Germany, Oct 19, 2018. In: BURGHARDT, Dirk, ed., Siming CHEN, ed., Gennady ANDRIENKO, ed., Natalia ANDRIENKO, ed., Ross PURVES, ed., Alexandra DIEHL, ed.. VGI Geovisual Analytics Workshop

@inproceedings{Signorello2018Explo-43922, title={Exploring geo-tagged photos to assess spatial patterns of visitors in protected areas : the case of park of Etna (Italy)}, url={http://bdva.net/2018/index.php/vgi-geovisual-analytics-workshop/}, year={2018}, booktitle={VGI Geovisual Analytics Workshop}, editor={Burghardt, Dirk and Chen, Siming and Andrienko, Gennady and Andrienko, Natalia and Purves, Ross and Diehl, Alexandra}, author={Signorello, Giovanni and Farinella, Giovanni Maria and Di Silvestro, Lorenzo and Torrisi, Alessandro and Gallo, Giovanni} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/43922"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-20T11:55:33Z</dcterms:available> <dc:contributor>Signorello, Giovanni</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Farinella, Giovanni Maria</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Di Silvestro, Lorenzo</dc:contributor> <dc:creator>Gallo, Giovanni</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43922"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:contributor>Farinella, Giovanni Maria</dc:contributor> <dc:creator>Torrisi, Alessandro</dc:creator> <dc:language>eng</dc:language> <dc:creator>Di Silvestro, Lorenzo</dc:creator> <dc:contributor>Torrisi, Alessandro</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-20T11:55:33Z</dc:date> <dcterms:issued>2018</dcterms:issued> <dcterms:title>Exploring geo-tagged photos to assess spatial patterns of visitors in protected areas : the case of park of Etna (Italy)</dcterms:title> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43922/3/Signorello_2-wl1uzthmoikk1.pdf"/> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Signorello, Giovanni</dc:creator> <dc:contributor>Gallo, Giovanni</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <dc:rights>terms-of-use</dc:rights> <dcterms:abstract xml:lang="eng">In this paper we use the georeferenced images publicly available on Flickr platform as a source of information to monitor visitors in nature areas. In particular, we propose and evaluate a method composed by three main steps to perform the analysis of social images related to natural park of Mount Etna. At first metadata of the georeferenced images are explored to identify trends, patterns and relationships among the information acquired. Then data mining techniques are used to generate a traveling model. Association rules that highlight locations visited jointly are identified using the Apriori data mining technique. Finally, we consider places that are likely to be jointly visited and analyze the tourist flow from one to another.</dcterms:abstract> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43922/3/Signorello_2-wl1uzthmoikk1.pdf"/> </rdf:Description> </rdf:RDF>

Downloads since Nov 20, 2018 (Information about access statistics)

Signorello_2-wl1uzthmoikk1.pdf 142

This item appears in the following Collection(s)

Search KOPS


Browse

My Account