A privacy-aware model to process data from location-based social media

Thumbnail Image
Date
2018
Authors
Löchner, Marc
Dunkel, Alexander
Burghardt, Dirk
Editors
Contact
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
DOI (citable link)
ArXiv-ID
International patent number
Link to the license
EU project number
Project
Open Access publication
Restricted until
Title in another language
Research Projects
Organizational Units
Journal Issue
Publication type
Contribution to a conference collection
Publication status
Published
Published in
VGI Geovisual Analytics Workshop / Burghardt, Dirk; Chen, Siming; Andrienko, Gennady; Andrienko, Natalia; Purves, Ross; Diehl, Alexandra (ed.)
Abstract
Many social media services offer their users to add location data to their posts. Since this data is usually publicly available, it can be used to create thematic maps based on the topical information, e.g. derived from hashtags attached to posts. However, users might not be aware, that their publications can be used for other purposes by third parties. In certain situations it can be compromising the user’s privacy. We introduce a conceptual model to help people who create those maps to preserve privacy of social media users. Therefore we analyze the data in a set of four facets. For each facet, we eliminate precise data by deriving multiple abstraction layers from it. Using these layers, we are able to quantitatively describe different levels of privacy. We further describe an example application to show use cases for the abstraction model on the same data in two contrary scenarios.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
Privacy, Social Computing, Geospatial Analysis
Conference
VGI Geovisual Analytics Workshop, colocated with BDVA 2018, Oct 19, 2018, Konstanz, Germany
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690LÖCHNER, Marc, Alexander DUNKEL, Dirk BURGHARDT, 2018. A privacy-aware model to process data from location-based social media. VGI Geovisual Analytics Workshop, colocated with BDVA 2018. Konstanz, Germany, Oct 19, 2018. In: BURGHARDT, Dirk, ed., Siming CHEN, ed., Gennady ANDRIENKO, ed., Natalia ANDRIENKO, ed., Ross PURVES, ed., Alexandra DIEHL, ed.. VGI Geovisual Analytics Workshop
BibTex
@inproceedings{Lochner2018priva-43921,
  year={2018},
  title={A privacy-aware model to process data from location-based social media},
  booktitle={VGI Geovisual Analytics Workshop},
  editor={Burghardt, Dirk and Chen, Siming and Andrienko, Gennady and Andrienko, Natalia and Purves, Ross and Diehl, Alexandra},
  author={Löchner, Marc and Dunkel, Alexander and Burghardt, Dirk}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43921">
    <dc:rights>terms-of-use</dc:rights>
    <dc:contributor>Dunkel, Alexander</dc:contributor>
    <dcterms:issued>2018</dcterms:issued>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43921/3/Loechner_2-1tc0wl382uqkr0.pdf"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43921"/>
    <dc:creator>Burghardt, Dirk</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-20T11:45:13Z</dcterms:available>
    <dc:language>eng</dc:language>
    <dcterms:abstract xml:lang="eng">Many social media services offer their users to add location data to their posts. Since this data is usually publicly available, it can be used to create thematic maps based on the topical information, e.g. derived from hashtags attached to posts. However, users might not be aware, that their publications can be used for other purposes by third parties. In certain situations it can be compromising the user’s privacy. We introduce a conceptual model to help people who create those maps to preserve privacy of social media users. Therefore we analyze the data in a set of four facets. For each facet, we eliminate precise data by deriving multiple abstraction layers from it. Using these layers, we are able to quantitatively describe different levels of privacy. We further describe an example application to show use cases for the abstraction model on the same data in two contrary scenarios.</dcterms:abstract>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Burghardt, Dirk</dc:contributor>
    <dcterms:title>A privacy-aware model to process data from location-based social media</dcterms:title>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-11-20T11:45:13Z</dc:date>
    <dc:creator>Dunkel, Alexander</dc:creator>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43921/3/Loechner_2-1tc0wl382uqkr0.pdf"/>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dc:creator>Löchner, Marc</dc:creator>
    <dc:contributor>Löchner, Marc</dc:contributor>
  </rdf:Description>
</rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Contact
URL of original publication
Test date of URL
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes
Refereed