SMARTexplore : Simplifying High-Dimensional Data Analysis through a Table-Based Visual Analytics Approach
SMARTexplore : Simplifying High-Dimensional Data Analysis through a Table-Based Visual Analytics Approach
Date
2019
Editors
Journal ISSN
Electronic ISSN
ISBN
Bibliographical data
Publisher
Series
URI (citable link)
DOI (citable link)
International patent number
Link to the license
EU project number
Project
SFB TRR 161 TP C 01 Quantitative Messung von Interaktion
Open Access publication
Collections
Title in another language
Publication type
Contribution to a conference collection
Publication status
Published
Published in
IEEE Conference on Visual Analytics Science and Technology (VAST) 2018. - Piscataway, NJ : IEEE, 2019. - ISBN 978-1-5386-6861-0
Abstract
We present SMARTEXPLORE, a novel visual analytics technique that simplifies the identification and understanding of clusters, correlations, and complex patterns in high-dimensional data. The analysis is integrated into an interactive table-based visualization that maintains a consistent and familiar representation throughout the analysis. The visualization is tightly coupled with pattern matching, subspace analysis, reordering, and layout algorithms. To increase the analyst’s trust in the revealed patterns, SMARTEXPLORE automatically selects and computes statistical measures based on dimension and data properties. While existing approaches to analyzing highdimensional data (e.g., planar projections and Parallel coordinates) have proven effective, they typically have steep learning curves for non-visualization experts. Our evaluation, based on three expert case studies, confirms that non-visualization experts successfully reveal patterns in high-dimensional data when using SMARTEXPLORE.
Summary in another language
Subject (DDC)
004 Computer Science
Keywords
High-dimensional data, visual exploration, patterndriven analysis, tabular visualization, subspace, aggregation
Conference
IEEE Conference on Visual Analytics Science and Technology (VAST) 2018, Oct 21, 2018 - Oct 26, 2018, Berlin, Germany
Review
undefined / . - undefined, undefined. - (undefined; undefined)
Cite This
ISO 690
BLUMENSCHEIN, Michael, Michael BEHRISCH, Stefanie SCHMID, Simon BUTSCHER, Deborah R. WAHL, Karoline VILLINGER, Britta RENNER, Harald REITERER, Daniel A. KEIM, 2019. SMARTexplore : Simplifying High-Dimensional Data Analysis through a Table-Based Visual Analytics Approach. IEEE Conference on Visual Analytics Science and Technology (VAST) 2018. Berlin, Germany, Oct 21, 2018 - Oct 26, 2018. In: IEEE Conference on Visual Analytics Science and Technology (VAST) 2018. Piscataway, NJ:IEEE. ISBN 978-1-5386-6861-0. Available under: doi: 10.1109/VAST.2018.8802486BibTex
@inproceedings{Blumenschein2019SMART-43582, year={2019}, doi={10.1109/VAST.2018.8802486}, title={SMARTexplore : Simplifying High-Dimensional Data Analysis through a Table-Based Visual Analytics Approach}, isbn={978-1-5386-6861-0}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={IEEE Conference on Visual Analytics Science and Technology (VAST) 2018}, author={Blumenschein, Michael and Behrisch, Michael and Schmid, Stefanie and Butscher, Simon and Wahl, Deborah R. and Villinger, Karoline and Renner, Britta and Reiterer, Harald and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43582"> <dc:contributor>Wahl, Deborah R.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Blumenschein, Michael</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Butscher, Simon</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43582/3/Blumenschein_2-mv29yhuqzckr3.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Wahl, Deborah R.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-18T13:58:29Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Behrisch, Michael</dc:contributor> <dc:creator>Behrisch, Michael</dc:creator> <dc:contributor>Renner, Britta</dc:contributor> <dc:creator>Reiterer, Harald</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:contributor>Reiterer, Harald</dc:contributor> <dc:creator>Renner, Britta</dc:creator> <dc:contributor>Schmid, Stefanie</dc:contributor> <dc:creator>Schmid, Stefanie</dc:creator> <dcterms:abstract xml:lang="eng">We present SMARTEXPLORE, a novel visual analytics technique that simplifies the identification and understanding of clusters, correlations, and complex patterns in high-dimensional data. The analysis is integrated into an interactive table-based visualization that maintains a consistent and familiar representation throughout the analysis. The visualization is tightly coupled with pattern matching, subspace analysis, reordering, and layout algorithms. To increase the analyst’s trust in the revealed patterns, SMARTEXPLORE automatically selects and computes statistical measures based on dimension and data properties. While existing approaches to analyzing highdimensional data (e.g., planar projections and Parallel coordinates) have proven effective, they typically have steep learning curves for non-visualization experts. Our evaluation, based on three expert case studies, confirms that non-visualization experts successfully reveal patterns in high-dimensional data when using SMARTEXPLORE.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43582"/> <dc:contributor>Villinger, Karoline</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-18T13:58:29Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dc:creator>Blumenschein, Michael</dc:creator> <dc:creator>Villinger, Karoline</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43582/3/Blumenschein_2-mv29yhuqzckr3.pdf"/> <dcterms:issued>2019</dcterms:issued> <dc:contributor>Butscher, Simon</dc:contributor> <dcterms:title>SMARTexplore : Simplifying High-Dimensional Data Analysis through a Table-Based Visual Analytics Approach</dcterms:title> </rdf:Description> </rdf:RDF>
Internal note
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Examination date of dissertation
Method of financing
Comment on publication
Alliance license
Corresponding Authors der Uni Konstanz vorhanden
International Co-Authors
Bibliography of Konstanz
Yes