SMARTexplore : Simplifying High-Dimensional Data Analysis through a Table-Based Visual Analytics Approach
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
We present SMARTEXPLORE, a novel visual analytics technique that simplifies the identification and understanding of clusters, correlations, and complex patterns in high-dimensional data. The analysis is integrated into an interactive table-based visualization that maintains a consistent and familiar representation throughout the analysis. The visualization is tightly coupled with pattern matching, subspace analysis, reordering, and layout algorithms. To increase the analyst’s trust in the revealed patterns, SMARTEXPLORE automatically selects and computes statistical measures based on dimension and data properties. While existing approaches to analyzing highdimensional data (e.g., planar projections and Parallel coordinates) have proven effective, they typically have steep learning curves for non-visualization experts. Our evaluation, based on three expert case studies, confirms that non-visualization experts successfully reveal patterns in high-dimensional data when using SMARTEXPLORE.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BLUMENSCHEIN, Michael, Michael BEHRISCH, Stefanie SCHMID, Simon BUTSCHER, Deborah R. WAHL, Karoline VILLINGER, Britta RENNER, Harald REITERER, Daniel A. KEIM, 2019. SMARTexplore : Simplifying High-Dimensional Data Analysis through a Table-Based Visual Analytics Approach. IEEE Conference on Visual Analytics Science and Technology (VAST) 2018. Berlin, Germany, 21. Okt. 2018 - 26. Okt. 2018. In: IEEE Conference on Visual Analytics Science and Technology (VAST) 2018. Piscataway, NJ: IEEE, 2019. ISBN 978-1-5386-6861-0. Available under: doi: 10.1109/VAST.2018.8802486BibTex
@inproceedings{Blumenschein2019SMART-43582, year={2019}, doi={10.1109/VAST.2018.8802486}, title={SMARTexplore : Simplifying High-Dimensional Data Analysis through a Table-Based Visual Analytics Approach}, isbn={978-1-5386-6861-0}, publisher={IEEE}, address={Piscataway, NJ}, booktitle={IEEE Conference on Visual Analytics Science and Technology (VAST) 2018}, author={Blumenschein, Michael and Behrisch, Michael and Schmid, Stefanie and Butscher, Simon and Wahl, Deborah R. and Villinger, Karoline and Renner, Britta and Reiterer, Harald and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/43582"> <dc:contributor>Wahl, Deborah R.</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Blumenschein, Michael</dc:contributor> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Butscher, Simon</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:creator>Keim, Daniel A.</dc:creator> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43582/3/Blumenschein_2-mv29yhuqzckr3.pdf"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Wahl, Deborah R.</dc:creator> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-18T13:58:29Z</dcterms:available> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:contributor>Behrisch, Michael</dc:contributor> <dc:creator>Behrisch, Michael</dc:creator> <dc:contributor>Renner, Britta</dc:contributor> <dc:creator>Reiterer, Harald</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:language>eng</dc:language> <dc:contributor>Reiterer, Harald</dc:contributor> <dc:creator>Renner, Britta</dc:creator> <dc:contributor>Schmid, Stefanie</dc:contributor> <dc:creator>Schmid, Stefanie</dc:creator> <dcterms:abstract xml:lang="eng">We present SMARTEXPLORE, a novel visual analytics technique that simplifies the identification and understanding of clusters, correlations, and complex patterns in high-dimensional data. The analysis is integrated into an interactive table-based visualization that maintains a consistent and familiar representation throughout the analysis. The visualization is tightly coupled with pattern matching, subspace analysis, reordering, and layout algorithms. To increase the analyst’s trust in the revealed patterns, SMARTEXPLORE automatically selects and computes statistical measures based on dimension and data properties. While existing approaches to analyzing highdimensional data (e.g., planar projections and Parallel coordinates) have proven effective, they typically have steep learning curves for non-visualization experts. Our evaluation, based on three expert case studies, confirms that non-visualization experts successfully reveal patterns in high-dimensional data when using SMARTEXPLORE.</dcterms:abstract> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43582"/> <dc:contributor>Villinger, Karoline</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-10-18T13:58:29Z</dc:date> <dc:rights>terms-of-use</dc:rights> <dc:creator>Blumenschein, Michael</dc:creator> <dc:creator>Villinger, Karoline</dc:creator> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/43582/3/Blumenschein_2-mv29yhuqzckr3.pdf"/> <dcterms:issued>2019</dcterms:issued> <dc:contributor>Butscher, Simon</dc:contributor> <dcterms:title>SMARTexplore : Simplifying High-Dimensional Data Analysis through a Table-Based Visual Analytics Approach</dcterms:title> </rdf:Description> </rdf:RDF>