KOPS - The Institutional Repository of the University of Konstanz

Runge‐Kutta methods for monotone differential and stochastic equations

Runge‐Kutta methods for monotone differential and stochastic equations

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

KLOEDEN, Peter, Johannes SCHROPP, 2003. Runge‐Kutta methods for monotone differential and stochastic equations. In: Proceedings in Applied Mathematics and Mechanics : PAMM. 3(1), pp. 565-566. eISSN 1617-7061. Available under: doi: 10.1002/pamm.200310550

@article{Kloeden2003-12Runge-43210, title={Runge‐Kutta methods for monotone differential and stochastic equations}, year={2003}, doi={10.1002/pamm.200310550}, number={1}, volume={3}, journal={Proceedings in Applied Mathematics and Mechanics : PAMM}, pages={565--566}, author={Kloeden, Peter and Schropp, Johannes} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/43210"> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-10T11:51:11Z</dcterms:available> <dcterms:title>Runge‐Kutta methods for monotone differential and stochastic equations</dcterms:title> <dc:contributor>Schropp, Johannes</dc:contributor> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/43210"/> <dc:contributor>Kloeden, Peter</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dc:creator>Schropp, Johannes</dc:creator> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dc:language>eng</dc:language> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:abstract xml:lang="eng">Runge‐Kutta methods which preserve monotonicity for deterministic ordinary differential equations also preserve montonicity for random differential equations albeit with reduced order. However, the only one‐step numerical methods which preserve the montone structure of a monotone stochastic differential equation are the strong Taylor schemes of strong order 0:5 and 1:0.</dcterms:abstract> <dc:creator>Kloeden, Peter</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-09-10T11:51:11Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dcterms:issued>2003-12</dcterms:issued> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


Browse

My Account