Comparing Sequential and Temporal Patterns from Human Mobility Data for Next-Place Prediction

Lade...
Vorschaubild
Dateien
Wang_2-11ruk1hrgl5pj0.pdf
Wang_2-11ruk1hrgl5pj0.pdfGröße: 826.72 KBDownloads: 415
Datum
2018
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Angaben zur Forschungsförderung (Freitext)
Projekt
SMARTACT Teilprojekt 6: Smartmobility / SMARTACT 2 Teilprojekt 6
Open Access-Veröffentlichung
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
Proceedings of UMAP '18 : Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization. New York: ACM Press, 2018, pp. 157-164. ISBN 978-1-4503-5784-5. Available under: doi: 10.1145/3213586.3226212
Zusammenfassung

In the domain of human behavior prediction, next-place prediction is an active research field. While prior work has applied sequential and temporal patterns for next-place prediction, no work has yet studied the prediction performance of combining sequential with temporal patterns compared to using them separately. In this paper, we address next-place prediction using the sequential and temporal patterns embedded in human mobility data that has been collected using the GPS sensor of smartphones. We test five next-place prediction methods, including single pattern-based methods and hybrid methods that combine temporal and sequential patterns. Instead of only examining average accuracy as in related work, we additionally evaluate the selected methods using incremental-prediction accuracy on two publicly available datasets (the MDC dataset and the StudentLife dataset). Our results suggest that (1) integrating multiple patterns is not necessarily more effective than using single patterns in average prediction accuracy, (2) most of the tested methods can outperform others for a certain time period (either for the prediction of all places or each place individually), and (3) average prediction accuracies of the top-three candidates using sequential patterns are relatively high (up to 0.77 and 0.91 in the median for both datasets). For real-time applications, we recommend applying multiple methods in parallel and choosing the prediction of the best method according to incremental-prediction accuracy. Lastly, we present an expert tool for visualizing the prediction results.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
26th Conference on User Modeling, Adaptation and Personalization, 8. Juli 2018 - 11. Juli 2018, Singapore
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690WANG, Yunlong, Corinna BREITINGER, Björn SOMMER, Falk SCHREIBER, Harald REITERER, 2018. Comparing Sequential and Temporal Patterns from Human Mobility Data for Next-Place Prediction. 26th Conference on User Modeling, Adaptation and Personalization. Singapore, 8. Juli 2018 - 11. Juli 2018. In: Proceedings of UMAP '18 : Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization. New York: ACM Press, 2018, pp. 157-164. ISBN 978-1-4503-5784-5. Available under: doi: 10.1145/3213586.3226212
BibTex
@inproceedings{Wang2018Compa-42878,
  year={2018},
  doi={10.1145/3213586.3226212},
  title={Comparing Sequential and Temporal Patterns from Human Mobility Data for Next-Place Prediction},
  isbn={978-1-4503-5784-5},
  publisher={ACM Press},
  address={New York},
  booktitle={Proceedings of UMAP '18 : Adjunct Publication of the 26th Conference on User Modeling, Adaptation and Personalization},
  pages={157--164},
  author={Wang, Yunlong and Breitinger, Corinna and Sommer, Björn and Schreiber, Falk and Reiterer, Harald}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42878">
    <dcterms:abstract xml:lang="eng">In the domain of human behavior prediction, next-place prediction is an active research field. While prior work has applied sequential and temporal patterns for next-place prediction, no work has yet studied the prediction performance of combining sequential with temporal patterns compared to using them separately. In this paper, we address next-place prediction using the sequential and temporal patterns embedded in human mobility data that has been collected using the GPS sensor of smartphones. We test five next-place prediction methods, including single pattern-based methods and hybrid methods that combine temporal and sequential patterns. Instead of only examining average accuracy as in related work, we additionally evaluate the selected methods using incremental-prediction accuracy on two publicly available datasets (the MDC dataset and the StudentLife dataset). Our results suggest that (1) integrating multiple patterns is not necessarily more effective than using single patterns in average prediction accuracy, (2) most of the tested methods can outperform others for a certain time period (either for the prediction of all places or each place individually), and (3) average prediction accuracies of the top-three candidates using sequential patterns are relatively high (up to 0.77 and 0.91 in the median for both datasets). For real-time applications, we recommend applying multiple methods in parallel and choosing the prediction of the best method according to incremental-prediction accuracy. Lastly, we present an expert tool for visualizing the prediction results.</dcterms:abstract>
    <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42878/1/Wang_2-11ruk1hrgl5pj0.pdf"/>
    <dc:contributor>Reiterer, Harald</dc:contributor>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:creator>Breitinger, Corinna</dc:creator>
    <dc:contributor>Wang, Yunlong</dc:contributor>
    <dc:rights>terms-of-use</dc:rights>
    <dc:creator>Sommer, Björn</dc:creator>
    <dc:creator>Schreiber, Falk</dc:creator>
    <dc:creator>Wang, Yunlong</dc:creator>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42878"/>
    <dc:contributor>Breitinger, Corinna</dc:contributor>
    <dcterms:title>Comparing Sequential and Temporal Patterns from Human Mobility Data for Next-Place Prediction</dcterms:title>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dc:creator>Reiterer, Harald</dc:creator>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dc:contributor>Schreiber, Falk</dc:contributor>
    <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/>
    <dcterms:issued>2018</dcterms:issued>
    <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/42878/1/Wang_2-11ruk1hrgl5pj0.pdf"/>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-18T13:58:21Z</dc:date>
    <dc:contributor>Sommer, Björn</dc:contributor>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-07-18T13:58:21Z</dcterms:available>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen