Inverse Lightfield Rendering for Shape, Reflection and Natural Illumination

Lade...
Vorschaubild
Dateien
Zu diesem Dokument gibt es keine Dateien.
Datum
2018
Herausgeber:innen
Kontakt
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
Angaben zur Forschungsförderung
European Union (EU): 336978
Projekt
LIA - Light Field Imaging and Analysis
Open Access-Veröffentlichung
Core Facility der Universität Konstanz
Gesperrt bis
Titel in einer weiteren Sprache
Forschungsvorhaben
Organisationseinheiten
Zeitschriftenheft
Publikationstyp
Beitrag zu einem Konferenzband
Publikationsstatus
Published
Erschienen in
PELILLO, Marcello, ed., Edwin HANCOCK, ed.. Energy Minimization Methods in Computer Vision and Pattern Recognition : 11th International Conference, EMMCVPR 2017, Venice, Italy, October 30 - November 1, 2017, revised selected papers. Cham: Springer, 2018, pp. 372-388. Lecture Notes in Computer Science. 10746. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-78198-3. Available under: doi: 10.1007/978-3-319-78199-0_25
Zusammenfassung

We propose an inverse rendering model for light fields to recover surface normals, depth, reflectance and natural illumination. Our setting is fully uncalibrated, with the reflectance modeled with a spatially-constant Blinn-Phong model and illumination as an environment map. While previous work makes strong assumptions in this difficult scenario, focusing solely on specific types of objects like faces or imposing very strong priors, our approach leverages only the light field structure, where a solution consistent across all subaperture views is sought. The optimization is based primarily on shading, which is sensitive to fine geometric details which are propagated to the initial coarse depth map. Despite the problem being inherently ill-posed, we achieve encouraging results on synthetic as well as real-world data.

Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
004 Informatik
Schlagwörter
Konferenz
11th International Conference, EMMCVPR 2017, 30. Okt. 2017 - 1. Nov. 2017, Venice, Italy
Rezension
undefined / . - undefined, undefined
Zitieren
ISO 690SULC, Antonin, Ole JOHANNSEN, Bastian GOLDLÜCKE, 2018. Inverse Lightfield Rendering for Shape, Reflection and Natural Illumination. 11th International Conference, EMMCVPR 2017. Venice, Italy, 30. Okt. 2017 - 1. Nov. 2017. In: PELILLO, Marcello, ed., Edwin HANCOCK, ed.. Energy Minimization Methods in Computer Vision and Pattern Recognition : 11th International Conference, EMMCVPR 2017, Venice, Italy, October 30 - November 1, 2017, revised selected papers. Cham: Springer, 2018, pp. 372-388. Lecture Notes in Computer Science. 10746. ISSN 0302-9743. eISSN 1611-3349. ISBN 978-3-319-78198-3. Available under: doi: 10.1007/978-3-319-78199-0_25
BibTex
@inproceedings{Sulc2018Inver-42738,
  year={2018},
  doi={10.1007/978-3-319-78199-0_25},
  title={Inverse Lightfield Rendering for Shape, Reflection and Natural Illumination},
  number={10746},
  isbn={978-3-319-78198-3},
  issn={0302-9743},
  publisher={Springer},
  address={Cham},
  series={Lecture Notes in Computer Science},
  booktitle={Energy Minimization Methods in Computer Vision and Pattern Recognition : 11th International Conference, EMMCVPR 2017, Venice, Italy, October 30 - November 1, 2017, revised selected papers},
  pages={372--388},
  editor={Pelillo, Marcello and Hancock, Edwin},
  author={Sulc, Antonin and Johannsen, Ole and Goldlücke, Bastian}
}
RDF
<rdf:RDF
    xmlns:dcterms="http://purl.org/dc/terms/"
    xmlns:dc="http://purl.org/dc/elements/1.1/"
    xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
    xmlns:bibo="http://purl.org/ontology/bibo/"
    xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#"
    xmlns:foaf="http://xmlns.com/foaf/0.1/"
    xmlns:void="http://rdfs.org/ns/void#"
    xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > 
  <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42738">
    <dcterms:title>Inverse Lightfield Rendering for Shape, Reflection and Natural Illumination</dcterms:title>
    <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-29T09:58:41Z</dcterms:available>
    <dc:contributor>Sulc, Antonin</dc:contributor>
    <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-29T09:58:41Z</dc:date>
    <dc:creator>Sulc, Antonin</dc:creator>
    <foaf:homepage rdf:resource="http://localhost:8080/"/>
    <dc:creator>Johannsen, Ole</dc:creator>
    <dc:contributor>Goldlücke, Bastian</dc:contributor>
    <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
    <dcterms:issued>2018</dcterms:issued>
    <dc:language>eng</dc:language>
    <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42738"/>
    <dc:creator>Goldlücke, Bastian</dc:creator>
    <dc:contributor>Johannsen, Ole</dc:contributor>
    <dcterms:abstract xml:lang="eng">We propose an inverse rendering model for light fields to recover surface normals, depth, reflectance and natural illumination. Our setting is fully uncalibrated, with the reflectance modeled with a spatially-constant Blinn-Phong model and illumination as an environment map. While previous work makes strong assumptions in this difficult scenario, focusing solely on specific types of objects like faces or imposing very strong priors, our approach leverages only the light field structure, where a solution consistent across all subaperture views is sought. The optimization is based primarily on shading, which is sensitive to fine geometric details which are propagated to the initial coarse depth map. Despite the problem being inherently ill-posed, we achieve encouraging results on synthetic as well as real-world data.</dcterms:abstract>
    <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/>
    <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/>
  </rdf:Description>
</rdf:RDF>
Interner Vermerk
xmlui.Submission.submit.DescribeStep.inputForms.label.kops_note_fromSubmitter
Kontakt
URL der Originalveröffentl.
Prüfdatum der URL
Prüfungsdatum der Dissertation
Finanzierungsart
Kommentar zur Publikation
Allianzlizenz
Corresponding Authors der Uni Konstanz vorhanden
Internationale Co-Autor:innen
Universitätsbibliographie
Ja
Begutachtet
Diese Publikation teilen