Theory of strain-induced confinement in transition metal dichalcogenide monolayers
Dateien
Datum
Autor:innen
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
DOI (zitierfähiger Link)
ArXiv-ID
Internationale Patentnummer
EU-Projektnummer
DFG-Projektnummer
Projekt
Open Access-Veröffentlichung
Sammlungen
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Recent experimental studies of out-of-plane straining geometries of transition metal dichalchogenide (TMD) monolayers have demonstrated sufficient band-gap renormalization for device application, such as single-photon emitters. Here, a simple continuum-mechanical plate-theory approach is used to estimate the topography of TMD monolayers layered atop nanopillar arrays. From such geometries, the induced conduction-band potential and band-gap renormalization are given, demonstrating a curvature of the potential that is independent of the height of the deforming nanopillar. Additionally, with a semiclassical WKB approximation, the expected escape rate of electrons in the strain potential may be calculated as a function of the height of the deforming nanopillar. This approach is in accordance with experiment, supporting recent findings suggesting that increasing nanopillar height decreases the linewidth of the single-photon emitters observed at the tip of the pillar and predicting the shift in photon energy with nanopillar height for systems with consistent topography.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
BROOKS, Matthew, Guido BURKARD, 2018. Theory of strain-induced confinement in transition metal dichalcogenide monolayers. In: Physical Review B. 2018, 97(19), 195454. ISSN 2469-9950. eISSN 2469-9969. Available under: doi: 10.1103/PhysRevB.97.195454BibTex
@article{Brooks2018Theor-42667, year={2018}, doi={10.1103/PhysRevB.97.195454}, title={Theory of strain-induced confinement in transition metal dichalcogenide monolayers}, number={19}, volume={97}, issn={2469-9950}, journal={Physical Review B}, author={Brooks, Matthew and Burkard, Guido}, note={Article Number: 195454} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/42667"> <dc:contributor>Burkard, Guido</dc:contributor> <dc:creator>Burkard, Guido</dc:creator> <dc:language>eng</dc:language> <dcterms:title>Theory of strain-induced confinement in transition metal dichalcogenide monolayers</dcterms:title> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-22T12:09:11Z</dcterms:available> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/42667"/> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-06-22T12:09:11Z</dc:date> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41"/> <dc:contributor>Brooks, Matthew</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dcterms:issued>2018</dcterms:issued> <dcterms:abstract xml:lang="eng">Recent experimental studies of out-of-plane straining geometries of transition metal dichalchogenide (TMD) monolayers have demonstrated sufficient band-gap renormalization for device application, such as single-photon emitters. Here, a simple continuum-mechanical plate-theory approach is used to estimate the topography of TMD monolayers layered atop nanopillar arrays. From such geometries, the induced conduction-band potential and band-gap renormalization are given, demonstrating a curvature of the potential that is independent of the height of the deforming nanopillar. Additionally, with a semiclassical WKB approximation, the expected escape rate of electrons in the strain potential may be calculated as a function of the height of the deforming nanopillar. This approach is in accordance with experiment, supporting recent findings suggesting that increasing nanopillar height decreases the linewidth of the single-photon emitters observed at the tip of the pillar and predicting the shift in photon energy with nanopillar height for systems with consistent topography.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Brooks, Matthew</dc:creator> </rdf:Description> </rdf:RDF>