Markov chain aggregation and its applications to combinatorial reaction networks


Dateien zu dieser Ressource

Prüfsumme: MD5:e824f57a058837e26d01b6352694dbe6

GANGULY, Arnab, Tatjana PETROV, Heinz KOEPPL, 2014. Markov chain aggregation and its applications to combinatorial reaction networks. In: Journal of Mathematical Biology. 69(3), pp. 767-797. ISSN 0303-6812. eISSN 1432-1416. Available under: doi: 10.1007/s00285-013-0738-7

@article{Ganguly2014-09Marko-42122, title={Markov chain aggregation and its applications to combinatorial reaction networks}, year={2014}, doi={10.1007/s00285-013-0738-7}, number={3}, volume={69}, issn={0303-6812}, journal={Journal of Mathematical Biology}, pages={767--797}, author={Ganguly, Arnab and Petrov, Tatjana and Koeppl, Heinz} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dcterms:available rdf:datatype="">2018-04-20T12:40:08Z</dcterms:available> <dc:language>eng</dc:language> <dcterms:issued>2014-09</dcterms:issued> <dspace:isPartOfCollection rdf:resource=""/> <dc:creator>Ganguly, Arnab</dc:creator> <dcterms:abstract xml:lang="eng">We consider a continuous-time Markov chain (CTMC) whose state space is partitioned into aggregates, and each aggregate is assigned a probability measure. A sufficient condition for defining a CTMC over the aggregates is presented as a variant of weak lumpability, which also characterizes that the measure over the original process can be recovered from that of the aggregated one. We show how the applicability of de-aggregation depends on the initial distribution. The application section is devoted to illustrate how the developed theory aids in reducing CTMC models of biochemical systems particularly in connection to protein-protein interactions. We assume that the model is written by a biologist in form of site-graph-rewrite rules. Site-graph-rewrite rules compactly express that, often, only a local context of a protein (instead of a full molecular species) needs to be in a certain configuration in order to trigger a reaction event. This observation leads to suitable aggregate Markov chains with smaller state spaces, thereby providing sufficient reduction in computational complexity. This is further exemplified in two case studies: simple unbounded polymerization and early EGFR/insulin crosstalk.</dcterms:abstract> <dc:rights>terms-of-use</dc:rights> <dc:creator>Petrov, Tatjana</dc:creator> <dcterms:hasPart rdf:resource=""/> <dcterms:title>Markov chain aggregation and its applications to combinatorial reaction networks</dcterms:title> <bibo:uri rdf:resource=""/> <dc:contributor>Petrov, Tatjana</dc:contributor> <dcterms:rights rdf:resource=""/> <dc:creator>Koeppl, Heinz</dc:creator> <dcterms:isPartOf rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:hasBitstream rdf:resource=""/> <dc:contributor>Ganguly, Arnab</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:date rdf:datatype="">2018-04-20T12:40:08Z</dc:date> <dc:contributor>Koeppl, Heinz</dc:contributor> </rdf:Description> </rdf:RDF>

Dateiabrufe seit 20.04.2018 (Informationen über die Zugriffsstatistik)

Ganguly_2-1m5873un0wrnm3.pdf 45

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto