Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können am Montag, 6.2. und Dienstag, 7.2. keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted on Monday, Feb. 6 and Tuesday, Feb. 7.)

Class Forcing in Class Theory

Cite This

Files in this item

Files Size Format View

There are no files associated with this item.

ANTOS, Carolin, 2018. Class Forcing in Class Theory. In: ANTOS, Carolin, ed., Sy-David FRIEDMAN, ed., Radek HONZIK, ed., Claudio TERNULLO, ed.. The hyperuniverse project and maximality. Cham:Birkhäuser, pp. 1-16. ISBN 978-3-319-62934-6. Available under: doi: 10.1007/978-3-319-62935-3_1

@incollection{Antos2018Class-41940, title={Class Forcing in Class Theory}, year={2018}, doi={10.1007/978-3-319-62935-3_1}, isbn={978-3-319-62934-6}, address={Cham}, publisher={Birkhäuser}, booktitle={The hyperuniverse project and maximality}, pages={1--16}, editor={Antos, Carolin and Friedman, Sy-David and Honzik, Radek and Ternullo, Claudio}, author={Antos, Carolin} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:contributor>Antos, Carolin</dc:contributor> <dspace:isPartOfCollection rdf:resource=""/> <dc:language>eng</dc:language> <dcterms:isPartOf rdf:resource=""/> <dcterms:title>Class Forcing in Class Theory</dcterms:title> <dcterms:issued>2018</dcterms:issued> <dc:creator>Antos, Carolin</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:date rdf:datatype="">2018-04-04T13:57:06Z</dc:date> <dcterms:isPartOf rdf:resource=""/> <dcterms:isPartOf rdf:resource=""/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource=""/> <dspace:isPartOfCollection rdf:resource=""/> <dcterms:abstract xml:lang="eng">In this article we show that Morse-Kelley class theory (MK) provides us with an adequate framework for class forcing. We give a rigorous definition of class forcing in a model (M,C) of MK, the main result being that the Definability Lemma (and the Truth Lemma) can be proven without restricting the notion of forcing. Furthermore we show under which conditions the axioms are preserved. We conclude by proving that Laver’s Theorem does not hold for class forcings.</dcterms:abstract> <dcterms:available rdf:datatype="">2018-04-04T13:57:06Z</dcterms:available> <bibo:uri rdf:resource=""/> </rdf:Description> </rdf:RDF>

This item appears in the following Collection(s)

Search KOPS


My Account