Type of Publication: | Journal article |
Publication status: | Published |
Author: | Gerlach, Moritz; Kunze, Markus |
Year of publication: | 2015 |
Published in: | Mathematische Nachrichten ; 288 (2015), 5-6. - pp. 584-592. - ISSN 0025-584X. - eISSN 1522-2616 |
ArXiv-ID: | arXiv:1307.8373 |
DOI (citable link): | https://dx.doi.org/10.1002/mana.201300218 |
Summary: |
Consider the lattice of bounded linear operators on the space of Borel measures on a Polish space. We prove that the operators which are continuous with respect to the weak topology induced by the bounded measurable functions form a sublattice that is lattice isomorphic to the space of transition kernels. As an application we present a purely analytic proof of Doob's theorem concerning stability of transition semigroups.
|
Subject (DDC): | 510 Mathematics |
Keywords: | Lattice structure, transition kernel, weak topology, Doob’s theorem |
Bibliography of Konstanz: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
GERLACH, Moritz, Markus KUNZE, 2015. On the lattice structure of kernel operators. In: Mathematische Nachrichten. 288(5-6), pp. 584-592. ISSN 0025-584X. eISSN 1522-2616. Available under: doi: 10.1002/mana.201300218
@article{Gerlach2015latti-41248, title={On the lattice structure of kernel operators}, year={2015}, doi={10.1002/mana.201300218}, number={5-6}, volume={288}, issn={0025-584X}, journal={Mathematische Nachrichten}, pages={584--592}, author={Gerlach, Moritz and Kunze, Markus} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/41248"> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:46:28Z</dcterms:available> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Kunze, Markus</dc:contributor> <dcterms:abstract xml:lang="eng">Consider the lattice of bounded linear operators on the space of Borel measures on a Polish space. We prove that the operators which are continuous with respect to the weak topology induced by the bounded measurable functions form a sublattice that is lattice isomorphic to the space of transition kernels. As an application we present a purely analytic proof of Doob's theorem concerning stability of transition semigroups.</dcterms:abstract> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Gerlach, Moritz</dc:contributor> <dcterms:title>On the lattice structure of kernel operators</dcterms:title> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Gerlach, Moritz</dc:creator> <dcterms:issued>2015</dcterms:issued> <dc:creator>Kunze, Markus</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T12:46:28Z</dc:date> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41248"/> </rdf:Description> </rdf:RDF>