Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)
Type of Publication: | Contribution to a conference collection |
Publication status: | Published |
Author: | Wolf, Stefan; Dobiasch, Martin; Artiga Gonzalez, Alexander; Saupe, Dietmar |
Year of publication: | 2018 |
Conference: | 11th International Symposium of Computer Science in Sports (IACSS 2017), Sep 6, 2017 - Sep 9, 2017, Konstanz |
Published in: | Proceedings of the 11th International Symposium on Computer Science in Sport (IACSS 2017) / Lames, Martin; Saupe, Dietmar; Wiemeyer, Josef (ed.). - Cham : Springer, 2018. - (Advances in Intelligent Systems and Computing ; 663). - pp. 103-109. - ISSN 2194-5357. - eISSN 2194-5365. - ISBN 978-3-319-67845-0 |
DOI (citable link): | https://dx.doi.org/10.1007/978-3-319-67846-7_11 |
Summary: |
With modern cycling computers it is possible to provide cyclists with complex feedback during rides. If the feedback is course-dependent, it is necessary to know the riders current position on the course. Different approaches to estimate the position on the course from common GPS and speed sensors were compared: the direct distance measure derived from the number of rotations of the wheel, GPS coordinates projected onto the course trajectory, and a Kalman filter incorporating speed as well as GPS measurements. To quantify the accuracy of the different methods, an experiment was conducted on a race track where a fixed point on the course was tagged during the ride. The Kalman filter approach was able to overcome certain shortcomings of the other two approaches and achieved a mean error of −0.13m and a root mean square error of 0.97m.
|
Subject (DDC): | 004 Computer Science |
Keywords: | Cycling; GPS; Kalman filter; Road cycling; Feedback |
Bibliography of Konstanz: | Yes |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
WOLF, Stefan, Martin DOBIASCH, Alexander ARTIGA GONZALEZ, Dietmar SAUPE, 2018. How to Accurately Determine the Position on a Known Course in Road Cycling. 11th International Symposium of Computer Science in Sports (IACSS 2017). Konstanz, Sep 6, 2017 - Sep 9, 2017. In: LAMES, Martin, ed., Dietmar SAUPE, ed., Josef WIEMEYER, ed.. Proceedings of the 11th International Symposium on Computer Science in Sport (IACSS 2017). Cham:Springer, pp. 103-109. ISSN 2194-5357. eISSN 2194-5365. ISBN 978-3-319-67845-0. Available under: doi: 10.1007/978-3-319-67846-7_11
@inproceedings{Wolf2018Accur-41237, title={How to Accurately Determine the Position on a Known Course in Road Cycling}, year={2018}, doi={10.1007/978-3-319-67846-7_11}, number={663}, isbn={978-3-319-67845-0}, issn={2194-5357}, address={Cham}, publisher={Springer}, series={Advances in Intelligent Systems and Computing}, booktitle={Proceedings of the 11th International Symposium on Computer Science in Sport (IACSS 2017)}, pages={103--109}, editor={Lames, Martin and Saupe, Dietmar and Wiemeyer, Josef}, author={Wolf, Stefan and Dobiasch, Martin and Artiga Gonzalez, Alexander and Saupe, Dietmar} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/41237"> <dcterms:title>How to Accurately Determine the Position on a Known Course in Road Cycling</dcterms:title> <dcterms:issued>2018</dcterms:issued> <dc:contributor>Wolf, Stefan</dc:contributor> <dcterms:abstract xml:lang="eng">With modern cycling computers it is possible to provide cyclists with complex feedback during rides. If the feedback is course-dependent, it is necessary to know the riders current position on the course. Different approaches to estimate the position on the course from common GPS and speed sensors were compared: the direct distance measure derived from the number of rotations of the wheel, GPS coordinates projected onto the course trajectory, and a Kalman filter incorporating speed as well as GPS measurements. To quantify the accuracy of the different methods, an experiment was conducted on a race track where a fixed point on the course was tagged during the ride. The Kalman filter approach was able to overcome certain shortcomings of the other two approaches and achieved a mean error of −0.13m and a root mean square error of 0.97m.</dcterms:abstract> <dc:language>eng</dc:language> <dc:contributor>Dobiasch, Martin</dc:contributor> <dc:contributor>Artiga Gonzalez, Alexander</dc:contributor> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T10:17:29Z</dc:date> <dc:creator>Dobiasch, Martin</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:contributor>Saupe, Dietmar</dc:contributor> <dc:creator>Saupe, Dietmar</dc:creator> <dc:creator>Artiga Gonzalez, Alexander</dc:creator> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41237"/> <dc:creator>Wolf, Stefan</dc:creator> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/36"/> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-06T10:17:29Z</dcterms:available> </rdf:Description> </rdf:RDF>