Appendix to: Convexity estimates for flows by powers of the mean curvature

Zitieren

Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

SCHULZE, Felix, Oliver C. SCHNÜRER, 2006. Appendix to: Convexity estimates for flows by powers of the mean curvature. In: Annali della Scuola Normale Superiore di Pisa : Classe di Scienze. 5(5), pp. 273-277. ISSN 0036-9918

@article{Schulze2006Appen-41191, title={Appendix to: Convexity estimates for flows by powers of the mean curvature}, url={http://www.numdam.org/item/ASNSP_2006_5_5_2_261_0}, year={2006}, number={5}, volume={5}, issn={0036-9918}, journal={Annali della Scuola Normale Superiore di Pisa : Classe di Scienze}, pages={273--277}, author={Schulze, Felix and Schnürer, Oliver C.} }

<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/41191"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Schnürer, Oliver C.</dc:creator> <dc:contributor>Schnürer, Oliver C.</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:creator>Schulze, Felix</dc:creator> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41191"/> <dc:language>eng</dc:language> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-01T15:16:13Z</dc:date> <dcterms:issued>2006</dcterms:issued> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-02-01T15:16:13Z</dcterms:available> <dcterms:abstract xml:lang="eng">We study the evolution of a closed, convex hypersurface in Rn+1 in direction of its normal vector, where the speed equals a power k≥1 of the mean curvature. We show that if initially the ratio of the biggest and smallest principal curvatures at every point is close enough to 1, depending only on k and n, then this is maintained under the flow. As a consequence we obtain that, when rescaling appropriately as the flow contracts to a point, the evolving surfaces converge to the unit sphere.</dcterms:abstract> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dcterms:title>Appendix to: Convexity estimates for flows by powers of the mean curvature</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:contributor>Schulze, Felix</dc:contributor> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Stöbern

Mein Benutzerkonto