Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können kommenden Montag und Dienstag keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted next Monday and Tuesday.)

A comparison of accurate automatic hippocampal segmentation methods

Cite This

Files in this item

Checksum: MD5:0356d167c4016df6b5c40ce82b699ce5

ZANDIFAR, Azar, Vladimir FONOV, Pierrick COUPÉ, Jens PRUESSNER, D. Louis COLLINS, 2017. A comparison of accurate automatic hippocampal segmentation methods. In: NeuroImage. 155, pp. 383-393. ISSN 1053-8119. eISSN 1095-9572. Available under: doi: 10.1016/j.neuroimage.2017.04.018

@article{Zandifar2017-07-15compa-41155, title={A comparison of accurate automatic hippocampal segmentation methods}, year={2017}, doi={10.1016/j.neuroimage.2017.04.018}, volume={155}, issn={1053-8119}, journal={NeuroImage}, pages={383--393}, author={Zandifar, Azar and Fonov, Vladimir and Coupé, Pierrick and Pruessner, Jens and Collins, D. Louis} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <dc:date rdf:datatype="">2018-01-25T10:13:48Z</dc:date> <dc:creator>Zandifar, Azar</dc:creator> <dcterms:abstract xml:lang="eng">The hippocampus is one of the first brain structures affected by Alzheimer's disease (AD). While many automatic methods for hippocampal segmentation exist, few studies have compared them on the same data. In this study, we compare four fully automated hippocampal segmentation methods in terms of their conformity with manual segmentation and their ability to be used as an AD biomarker in clinical settings. We also apply error correction to the four automatic segmentation methods, and complete a comprehensive validation to investigate differences between the methods. The effect size and classification performance is measured for AD versus normal control (NC) groups and for stable mild cognitive impairment (sMCI) versus progressive mild cognitive impairment (pMCI) groups. Our study shows that the nonlinear patch-based segmentation method with error correction is the most accurate automatic segmentation method and yields the most conformity with manual segmentation (κ=0.894). The largest effect size between AD versus NC and sMCI versus pMCI is produced by FreeSurfer with error correction. We further show that, using only hippocampal volume, age, and sex as features, the area under the receiver operating characteristic curve reaches up to 0.8813 for AD versus NC and 0.6451 for sMCI versus pMCI. However, the automatic segmentation methods are not significantly different in their performance.</dcterms:abstract> <dcterms:title>A comparison of accurate automatic hippocampal segmentation methods</dcterms:title> <dspace:isPartOfCollection rdf:resource=""/> <dc:contributor>Pruessner, Jens</dc:contributor> <dc:contributor>Coupé, Pierrick</dc:contributor> <dcterms:isPartOf rdf:resource=""/> <dc:language>eng</dc:language> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:creator>Fonov, Vladimir</dc:creator> <dcterms:rights rdf:resource=""/> <dcterms:issued>2017-07-15</dcterms:issued> <dc:creator>Coupé, Pierrick</dc:creator> <dc:rights>terms-of-use</dc:rights> <dc:contributor>Fonov, Vladimir</dc:contributor> <dspace:hasBitstream rdf:resource=""/> <dc:contributor>Collins, D. Louis</dc:contributor> <bibo:uri rdf:resource=""/> <dc:creator>Collins, D. Louis</dc:creator> <dc:creator>Pruessner, Jens</dc:creator> <dcterms:hasPart rdf:resource=""/> <dcterms:available rdf:datatype="">2018-01-25T10:13:48Z</dcterms:available> <dc:contributor>Zandifar, Azar</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> </rdf:Description> </rdf:RDF>

Downloads since Jan 25, 2018 (Information about access statistics)

Zandifar_2-skvhn40sgzrz5.pdf 224

This item appears in the following Collection(s)

Search KOPS


My Account