Bring It to the Pitch : Combining Video and Movement Data to Enhance Team Sport Analysis
Dateien
Datum
Herausgeber:innen
ISSN der Zeitschrift
Electronic ISSN
ISBN
Bibliografische Daten
Verlag
Schriftenreihe
Auflagebezeichnung
URI (zitierfähiger Link)
DOI (zitierfähiger Link)
Internationale Patentnummer
Link zur Lizenz
Angaben zur Forschungsförderung
Projekt
Open Access-Veröffentlichung
Sammlungen
Core Facility der Universität Konstanz
Titel in einer weiteren Sprache
Publikationstyp
Publikationsstatus
Erschienen in
Zusammenfassung
Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach.
Zusammenfassung in einer weiteren Sprache
Fachgebiet (DDC)
Schlagwörter
Konferenz
Rezension
Zitieren
ISO 690
STEIN, Manuel, Halldor JANETZKO, Andreas LAMPRECHT, Thorsten BREITKREUTZ, Philip ZIMMERMANN, Bastian GOLDLÜCKE, Tobias SCHRECK, Gennady ANDRIENKO, Michael GROSSNIKLAUS, Daniel A. KEIM, 2018. Bring It to the Pitch : Combining Video and Movement Data to Enhance Team Sport Analysis. In: IEEE transactions on visualization and computer graphics. 2018, 24(1), pp. 13-22. ISSN 1077-2626. eISSN 1941-0506. Available under: doi: 10.1109/TVCG.2017.2745181BibTex
@article{Stein2018-01Bring-41137, year={2018}, doi={10.1109/TVCG.2017.2745181}, title={Bring It to the Pitch : Combining Video and Movement Data to Enhance Team Sport Analysis}, number={1}, volume={24}, issn={1077-2626}, journal={IEEE transactions on visualization and computer graphics}, pages={13--22}, author={Stein, Manuel and Janetzko, Halldor and Lamprecht, Andreas and Breitkreutz, Thorsten and Zimmermann, Philip and Goldlücke, Bastian and Schreck, Tobias and Andrienko, Gennady and Grossniklaus, Michael and Keim, Daniel A.} }
RDF
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/server/rdf/resource/123456789/41137"> <dc:contributor>Zimmermann, Philip</dc:contributor> <dc:creator>Andrienko, Gennady</dc:creator> <dc:contributor>Janetzko, Halldor</dc:contributor> <dc:contributor>Goldlücke, Bastian</dc:contributor> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <dc:creator>Grossniklaus, Michael</dc:creator> <dcterms:title>Bring It to the Pitch : Combining Video and Movement Data to Enhance Team Sport Analysis</dcterms:title> <dc:language>eng</dc:language> <dc:contributor>Andrienko, Gennady</dc:contributor> <dc:creator>Lamprecht, Andreas</dc:creator> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/server/rdf/resource/123456789/36"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/41137"/> <dc:creator>Goldlücke, Bastian</dc:creator> <dc:contributor>Keim, Daniel A.</dc:contributor> <dc:contributor>Schreck, Tobias</dc:contributor> <dc:creator>Zimmermann, Philip</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/"/> <dc:creator>Stein, Manuel</dc:creator> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-24T15:01:08Z</dc:date> <dc:contributor>Breitkreutz, Thorsten</dc:contributor> <dspace:hasBitstream rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41137/1/Stein_2-hr3l95xf6fze7.pdf"/> <dc:creator>Keim, Daniel A.</dc:creator> <dcterms:issued>2018-01</dcterms:issued> <dc:contributor>Lamprecht, Andreas</dc:contributor> <dc:contributor>Stein, Manuel</dc:contributor> <dc:rights>terms-of-use</dc:rights> <dcterms:hasPart rdf:resource="https://kops.uni-konstanz.de/bitstream/123456789/41137/1/Stein_2-hr3l95xf6fze7.pdf"/> <dcterms:rights rdf:resource="https://rightsstatements.org/page/InC/1.0/"/> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2018-01-24T15:01:08Z</dcterms:available> <dc:creator>Breitkreutz, Thorsten</dc:creator> <dc:creator>Schreck, Tobias</dc:creator> <dcterms:abstract xml:lang="eng">Analysts in professional team sport regularly perform analysis to gain strategic and tactical insights into player and team behavior. Goals of team sport analysis regularly include identification of weaknesses of opposing teams, or assessing performance and improvement potential of a coached team. Current analysis workflows are typically based on the analysis of team videos. Also, analysts can rely on techniques from Information Visualization, to depict e.g., player or ball trajectories. However, video analysis is typically a time-consuming process, where the analyst needs to memorize and annotate scenes. In contrast, visualization typically relies on an abstract data model, often using abstract visual mappings, and is not directly linked to the observed movement context anymore. We propose a visual analytics system that tightly integrates team sport video recordings with abstract visualization of underlying trajectory data. We apply appropriate computer vision techniques to extract trajectory data from video input. Furthermore, we apply advanced trajectory and movement analysis techniques to derive relevant team sport analytic measures for region, event and player analysis in the case of soccer analysis. Our system seamlessly integrates video and visualization modalities, enabling analysts to draw on the advantages of both analysis forms. Several expert studies conducted with team sport analysts indicate the effectiveness of our integrated approach.</dcterms:abstract> <dc:contributor>Grossniklaus, Michael</dc:contributor> <dc:creator>Janetzko, Halldor</dc:creator> </rdf:Description> </rdf:RDF>