Albero : A Visual Analytics Approach for Probabilistic Weather Forecasting


Dateien zu dieser Ressource

Dateien Größe Format Anzeige

Zu diesem Dokument gibt es keine Dateien.

DIEHL, Alexandra, Leandro PELOROSSO, Claudio DELRIEUX, Kresimir MATKOVIC, Juan RUIZ, M. Eduard GRÖLLER, Stefan BRUCKNER, 2017. Albero : A Visual Analytics Approach for Probabilistic Weather Forecasting. In: Computer Graphics Forum. 36(7), pp. 135-144. ISSN 0167-7055. eISSN 1467-8659. Available under: doi: 10.1111/cgf.13279

@article{Diehl2017-10-13Alber-40954, title={Albero : A Visual Analytics Approach for Probabilistic Weather Forecasting}, year={2017}, doi={10.1111/cgf.13279}, number={7}, volume={36}, issn={0167-7055}, journal={Computer Graphics Forum}, pages={135--144}, author={Diehl, Alexandra and Pelorosso, Leandro and Delrieux, Claudio and Matkovic, Kresimir and Ruiz, Juan and Gröller, M. Eduard and Bruckner, Stefan} }

<rdf:RDF xmlns:dcterms="" xmlns:dc="" xmlns:rdf="" xmlns:bibo="" xmlns:dspace="" xmlns:foaf="" xmlns:void="" xmlns:xsd="" > <rdf:Description rdf:about=""> <bibo:uri rdf:resource=""/> <dspace:isPartOfCollection rdf:resource=""/> <dc:creator>Pelorosso, Leandro</dc:creator> <dcterms:title>Albero : A Visual Analytics Approach for Probabilistic Weather Forecasting</dcterms:title> <dc:contributor>Diehl, Alexandra</dc:contributor> <dcterms:abstract xml:lang="eng">Probabilistic weather forecasts are amongst the most popular ways to quantify numerical forecast uncertainties. The analog regression method can quantify uncertainties and express them as probabilities. The method comprises the analysis of errors from a large database of past forecasts generated with a specific numerical model and observational data. Current visualization tools based on this method are essentially automated and provide limited analysis capabilities. In this paper, we propose a novel approach that breaks down the automatic process using the experience and knowledge of the users and creates a new interactive visual workflow. Our approach allows forecasters to study probabilistic forecasts, their inner analogs and observations, their associated spatial errors, and additional statistical information by means of coordinated and linked views. We designed the presented solution following a participatory methodology together with domain experts. Several meteorologists with different backgrounds validated the approach. Two case studies illustrate the capabilities of our solution. It successfully facilitates the analysis of uncertainty and systematic model biases for improved decision-making and process-quality measurements.</dcterms:abstract> <dc:contributor>Pelorosso, Leandro</dc:contributor> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dc:date rdf:datatype="">2017-12-15T13:57:37Z</dc:date> <dcterms:available rdf:datatype="">2017-12-15T13:57:37Z</dcterms:available> <dc:creator>Gröller, M. Eduard</dc:creator> <dc:contributor>Gröller, M. Eduard</dc:contributor> <dcterms:issued>2017-10-13</dcterms:issued> <dc:contributor>Matkovic, Kresimir</dc:contributor> <dcterms:isPartOf rdf:resource=""/> <dc:contributor>Ruiz, Juan</dc:contributor> <dc:contributor>Bruckner, Stefan</dc:contributor> <dc:creator>Ruiz, Juan</dc:creator> <dc:contributor>Delrieux, Claudio</dc:contributor> <dc:creator>Bruckner, Stefan</dc:creator> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:creator>Diehl, Alexandra</dc:creator> <dc:creator>Delrieux, Claudio</dc:creator> <dc:language>eng</dc:language> <dc:creator>Matkovic, Kresimir</dc:creator> </rdf:Description> </rdf:RDF>

Das Dokument erscheint in:

KOPS Suche


Mein Benutzerkonto