Aufgrund von Vorbereitungen auf eine neue Version von KOPS, können derzeit keine Publikationen eingereicht werden. (Due to preparations for a new version of KOPS, no publications can be submitted currently.)
Type of Publication: | Journal article |
Publication status: | Published |
Author: | Freistühler, Heinrich; Rohde, Christian |
Year of publication: | 2003 |
Published in: | Physica D : Nonlinear Phenomena ; 185 (2003), 2. - pp. 78-96. - ISSN 0167-2789. - eISSN 1872-8022 |
DOI (citable link): | https://dx.doi.org/10.1016/S0167-2789(03)00206-9 |
Summary: |
This article provides a complete bifurcation analysis of the Rankine–Hugoniot equations for compressible magnetohydrodynamics (MHD) in the case of a perfect gas. Particular scaling properties of the perfect-gas equation of state are used to reduce the number of bifurcation parameters. The smaller number, together with a novel choice, of these parameters results in a detailed picture of the global situation which is distinctly sharper than the one implied by previous literature. The description includes statements about the location, topology, and dimensions of various regimes corresponding to different combinations of possible shock waves of given type, in dependence of the adiabatic exponent of the gas. The analysis is also a prerequisite for new results on the existence and bifurcation of viscous profiles for intermediate MHD shock waves that are presented in a separate paper.
|
PACS Classification: | 47.40.N; 47.40; 52.35.B |
Subject (DDC): | 510 Mathematics |
Files | Size | Format | View |
---|---|---|---|
There are no files associated with this item. |
FREISTÜHLER, Heinrich, Christian ROHDE, 2003. The bifurcation analysis of the MHD Rankine–Hugoniot equations for a perfect gas. In: Physica D : Nonlinear Phenomena. 185(2), pp. 78-96. ISSN 0167-2789. eISSN 1872-8022. Available under: doi: 10.1016/S0167-2789(03)00206-9
@article{Freistuhler2003-11bifur-40833, title={The bifurcation analysis of the MHD Rankine–Hugoniot equations for a perfect gas}, year={2003}, doi={10.1016/S0167-2789(03)00206-9}, number={2}, volume={185}, issn={0167-2789}, journal={Physica D : Nonlinear Phenomena}, pages={78--96}, author={Freistühler, Heinrich and Rohde, Christian} }
<rdf:RDF xmlns:dcterms="http://purl.org/dc/terms/" xmlns:dc="http://purl.org/dc/elements/1.1/" xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:bibo="http://purl.org/ontology/bibo/" xmlns:dspace="http://digital-repositories.org/ontologies/dspace/0.1.0#" xmlns:foaf="http://xmlns.com/foaf/0.1/" xmlns:void="http://rdfs.org/ns/void#" xmlns:xsd="http://www.w3.org/2001/XMLSchema#" > <rdf:Description rdf:about="https://kops.uni-konstanz.de/rdf/resource/123456789/40833"> <dcterms:isPartOf rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <dc:contributor>Rohde, Christian</dc:contributor> <foaf:homepage rdf:resource="http://localhost:8080/jspui"/> <dc:language>eng</dc:language> <dcterms:available rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-05T10:08:19Z</dcterms:available> <dcterms:title>The bifurcation analysis of the MHD Rankine–Hugoniot equations for a perfect gas</dcterms:title> <void:sparqlEndpoint rdf:resource="http://localhost/fuseki/dspace/sparql"/> <dspace:isPartOfCollection rdf:resource="https://kops.uni-konstanz.de/rdf/resource/123456789/39"/> <bibo:uri rdf:resource="https://kops.uni-konstanz.de/handle/123456789/40833"/> <dcterms:issued>2003-11</dcterms:issued> <dc:date rdf:datatype="http://www.w3.org/2001/XMLSchema#dateTime">2017-12-05T10:08:19Z</dc:date> <dc:creator>Freistühler, Heinrich</dc:creator> <dc:creator>Rohde, Christian</dc:creator> <dc:contributor>Freistühler, Heinrich</dc:contributor> <dcterms:abstract xml:lang="eng">This article provides a complete bifurcation analysis of the Rankine–Hugoniot equations for compressible magnetohydrodynamics (MHD) in the case of a perfect gas. Particular scaling properties of the perfect-gas equation of state are used to reduce the number of bifurcation parameters. The smaller number, together with a novel choice, of these parameters results in a detailed picture of the global situation which is distinctly sharper than the one implied by previous literature. The description includes statements about the location, topology, and dimensions of various regimes corresponding to different combinations of possible shock waves of given type, in dependence of the adiabatic exponent of the gas. The analysis is also a prerequisite for new results on the existence and bifurcation of viscous profiles for intermediate MHD shock waves that are presented in a separate paper.</dcterms:abstract> </rdf:Description> </rdf:RDF>